跳转至内容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
内容
移动到侧边栏
隐藏
开始
1
证明
切换目录
数学著名定理/欧拉公式
1 language
বাংলা
Edit links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
Wikidata item
外观
移动到侧边栏
隐藏
来自维基教科书,开放世界开放书籍
<
数学著名定理
欧拉公式
指出,
exp
i
θ
=
i
sin
θ
+
cos
θ
{\displaystyle \exp i\theta =i\sin \theta +\cos \theta }
由此,著名的恒等式,
exp
i
π
+
1
=
0
{\displaystyle \exp i\pi +1=0}
可以推导出来。
证明
[
编辑
|
编辑源代码
]
定义 1
exp
φ
=
∑
n
=
0
∞
1
n
!
φ
n
{\displaystyle \exp \varphi =\sum _{n=0}^{\infty }{\frac {1}{n!}}\varphi ^{n}}
定义 2
sin
φ
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
+
1
)
!
φ
2
n
+
1
{\displaystyle \sin \varphi =\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)!}}\varphi ^{2n+1}}
定义 3
cos
φ
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
)
!
φ
2
n
{\displaystyle \cos \varphi =\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n)!}}\varphi ^{2n}}
以下结果将被假设;
sin
π
=
0
{\displaystyle \sin \pi =0}
cos
π
=
−
1
{\displaystyle \cos \pi =-1}
定理 1
exp
i
θ
=
cos
θ
+
i
sin
θ
{\displaystyle \exp i\theta =\cos \theta +i\sin \theta }
证明
根据定义 1,
exp
i
θ
=
∑
n
=
0
∞
1
n
!
(
i
θ
)
n
{\displaystyle \exp i\theta =\sum _{n=0}^{\infty }{\frac {1}{n!}}(i\theta )^{n}}
观察到,可以将求和分成两个,
exp
i
θ
=
∑
n
=
0
∞
1
(
2
n
)
!
(
i
θ
)
2
n
+
∑
n
=
0
∞
1
(
2
n
+
1
)
!
(
i
θ
)
2
n
+
1
{\displaystyle \exp i\theta =\sum _{n=0}^{\infty }{\frac {1}{(2n)!}}(i\theta )^{2n}+\sum _{n=0}^{\infty }{\frac {1}{(2n+1)!}}(i\theta )^{2n+1}}
评估,
exp
i
θ
=
∑
n
=
0
∞
i
2
n
(
2
n
)
!
θ
2
n
+
∑
n
=
0
∞
i
2
n
+
1
(
2
n
+
1
)
!
θ
2
n
+
1
{\displaystyle \exp i\theta =\sum _{n=0}^{\infty }{\frac {i^{2n}}{(2n)!}}\theta ^{2n}+\sum _{n=0}^{\infty }{\frac {i^{2n+1}}{(2n+1)!}}\theta ^{2n+1}}
exp
i
θ
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
)
!
θ
2
n
+
i
∑
n
=
0
∞
(
−
1
)
n
(
2
n
+
1
)
!
θ
2
n
+
1
{\displaystyle \exp i\theta =\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n)!}}\theta ^{2n}+i\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)!}}\theta ^{2n+1}}
根据定义 2 和 3,
exp
i
θ
=
cos
θ
+
i
sin
θ
{\displaystyle \exp i\theta =\cos \theta +i\sin \theta }
◼
{\displaystyle \blacksquare }
定理 2
exp
i
π
+
1
=
0
{\displaystyle \exp i\pi +1=0}
证明
根据定理 1,
exp
i
π
=
cos
π
+
i
sin
π
{\displaystyle \exp i\pi =\cos \pi +i\sin \pi }
exp
i
π
=
−
1
+
0
i
{\displaystyle \exp i\pi =-1+0i}
因此,
exp
i
π
+
1
=
0
{\displaystyle \exp i\pi +1=0}
◼
{\displaystyle \blacksquare }
类别
:
书籍:数学名定理
华夏公益教科书