从当前的推理规则来看,推导中的析取很难处理。使用已推出的析取并应用析取消去规则(DE)并不太糟糕,但有一个更易于使用的替代方法。首先推导出析取更困难。我们的析取引入规则(DI)对于此任务来说是一个相当无力的工具。在本模块中,我们介绍了推导规则,这些规则为处理推导中的析取提供了替代方法。
我们从一个新的(即将推出的)推理规则开始。这将为析取消去规则(DE)提供一个有用的替代方案。
- 拒取式假言推理,形式 I (MTP)



- 拒取式假言推理,形式 II (MTP)



拒取式假言推理有时被称为析取三段论,偶尔也被称为“狗的规则”。
这个新规则需要以下两个支持定理。

|
1.
|
|
|
|
|
假设 ![{\displaystyle [(\mathrm {P} \lor \mathrm {Q} )\land \lnot \mathrm {P} \rightarrow \mathrm {Q} ]\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ce2fd880e79bd95061a9001884c5f98b39d25c94) |
2.
|
|
|
|
|
1 KE |
3.
|
|
|
|
|
1 KE |
4.
|
|
|
|
|
3 CAdd |
5.
|
|
|
|
|
T1 [P/Q] |
6.
|
|
|
|
|
2, 4, 5 DE |
|
|
|
|
|
7.
|
|
|
|
1–6 CI |
|

|
1.
|
|
|
|
|
假设 ![{\displaystyle [(\mathrm {P} \lor \mathrm {Q} )\land \lnot \mathrm {Q} \rightarrow \mathrm {P} ]\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/017310eff4f2d7cae3bd6dd40e51e5acc578175e) |
2.
|
|
|
|
|
1 KE |
3.
|
|
|
|
|
1 KE |
4.
|
|
|
|
|
3 CAdd |
5.
|
|
|
|
|
T1 |
6.
|
|
|
|
|
2, 4, 5 DE |
|
|
|
|
|
7.
|
|
|
|
1–6 CI |
|
为了使用 MTP 的示例,我们将重新进行构建复杂推导中的示例推导。
∴ 
|
1.
|
|
|
|
前提 |
2.
|
|
|
|
前提 |
3.
|
|
|
|
前提 |
|
|
|
|
|
4.
|
|
|
|
|
假设 ![{\displaystyle [\mathrm {P} \lor \mathrm {Q} \rightarrow \lnot \mathrm {R} ]\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/aa44596d60b688c05bbdbe0bc7247ed056fb546a) |
|
|
|
|
|
|
5.
|
|
|
|
|
|
假设 ![{\displaystyle [\lnot \mathrm {R} ]\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d8b390160716315f88a8ad089d9a9d61428354ee) |
6.
|
|
|
|
|
|
2 KE |
7.
|
|
|
|
|
|
3, 6 CE |
8.
|
|
|
|
|
|
4, 7 MTP |
9.
|
|
|
|
|
|
5, 8 KI |
10.
|
|
|
|
|
|
1, 9 CE |
11.
|
|
|
|
|
|
2 KE |
|
|
|
|
|
|
12.
|
|
|
|
|
5–11 NI |
|
|
|
|
|
13.
|
|
|
|
4–12 CI |
|
在第 4 行之后,我们没有费心去推导出 DE 所需的前提行,而是直接进行结论的后件的子推导。在第 8 行,我们应用了 MTP。
下一个推导规则显著减少了推导析取的步骤,因此为析取引入 (DI) 提供了一个有用的替代方案。
- 条件析取 (CDJ)



|
1.
|
|
|
|
|
假设 ![{\displaystyle [(\lnot \mathrm {P} \rightarrow \mathrm {Q} )\rightarrow \mathrm {P} \lor \mathrm {Q} ]\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d274e3f04d76311583944ef8236ff241af80cfab) |
|
|
|
|
|
|
2.
|
|
|
|
|
|
假设 ![{\displaystyle [\mathrm {P} \lor \mathrm {Q} ]\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d908c75773c25f4ce62e273bd9b6b7abe190692f) |
|
|
|
|
|
|
|
3.
|
|
|
|
|
|
|
假设 ![{\displaystyle [\lnot \mathrm {P} ]\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ebecf005a1793b292d92ddec0a677c0612909c89) |
|
|
|
|
|
|
|
|
4.
|
|
|
|
|
|
|
3 DI |
5.
|
|
|
|
|
|
|
2 R |
|
|
|
|
|
|
|
6.
|
|
|
|
|
|
3–5 NI |
7.
|
|
|
|
|
|
1, 6 CE |
8.
|
|
|
|
|
|
7 DI |
|
|
|
|
|
|
9.
|
|
|
|
|
2–8 NI |
|
|
|
|
|
10.
|
|
|
|
1–9 CI |
|
这个推导将使用 **T12**(在 推导推理规则 中引入),即使它的证明留给读者作为练习。以下推导的正确性,尤其是第 2 行,假设您已经证明了 **T12**。
- ∴

|
1.
|
|
|
|
|
假设 ![{\displaystyle [\lnot (\mathrm {P} \rightarrow \mathrm {Q} )\rightarrow (\mathrm {Q} \rightarrow \mathrm {R} )]\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4f17aa6df957ee3265b637942af874d9ab1c05c8) |
2.
|
|
|
|
|
T12 |
3.
|
|
|
|
|
1, 2 CE |
4.
|
|
|
|
|
3 KE |
5.
|
|
|
|
|
4 CAdd |
|
|
|
|
|
7.
|
|
|
|
1–6 CI |
8.
|
|
|
|
7 CDJ |
|
这里我们试图通过首先推导出 CDJ 所需的前件行来推导出所需的条件。