分形/gnofract
外观
< 分形
commons:Category:Fractals created with Gnofract4D
- 用于生成和着色分形的公式库。 此库包含与 Gnofract 4D 分形生成器兼容的公式。许多公式也与 FRACTINT https://www.fractint.org/ 和 UltraFractal https://www.ultrafractal.com 兼容。
#!/usr/bin/env python
# gnofract4d /gnofract4d-3.13/fract4d/parfile.py
# rudimentary read-only support for Fractint PAR files
# issues discovered while looking at fotd3.par
# y needs to be negative (?)
# use gf4d.cfrm#default - continuous potential doesn't work?
# rotation == -xyangle in degrees, needs convert to radians
import string
import preprocessor
import math
def parse(file,f):
# reset the fractal to have defaults closer to Fractint
f.set_outer("gf4d.cfrm","default")
f.yflip = True
params = get_params(file)
pairs = get_param_pairs(params)
formulaname = pairs.get("formulaname","Mandelbrot")
formulafile = pairs.get("formulafile","gf4d.frm")
f.set_formula(formulafile, formulaname)
for (k,v) in pairs.items():
if k == "maxiter": parse_maxiter(v,f)
elif k == "center-mag" : parse_center_mag(v,f)
elif k == "colors" : parse_colors(v,f)
elif k == "params" : parse_params(v,f)
elif k == "logmap" : parse_logmap(v,f)
def parse_params(val,f):
paramlist = val.split("/")
l = len(paramlist)/2
for i in xrange(l):
(re,im) = (paramlist[i*2],paramlist[i*2+1])
name = "@p%d" % (i+1)
val = "(%s,%s)" % (re,im)
f.forms[0].set_named_param(name,val)
def get_params(file):
return preprocessor.T(file.read()).out().split()
def parse_logmap(val,f):
f.set_outer("fractint.ucl","outside")
f.forms[1].set_named_param("@logmap",val)
def get_param_pairs(params):
pairs = {}
for p in params:
vals = p.split("=")
if len(vals) == 2:
pairs[vals[0]] = vals[1]
return pairs
def parse_maxiter(val,f):
max = int(val)
f.maxiter = max
def parse_colors(val,f):
colors = colorRange(val)
f.get_gradient().load_fractint(colors)
def parse_center_mag(val,f):
"x/y/mag(/xmag/rot/skew)"
vals = val.split("/")
x = float(vals[0])
y = -float(vals[1])
mag = float(vals[2])
f.params[f.XCENTER] = x
f.params[f.YCENTER] = y
h = 2.0/mag
f.params[f.MAGNITUDE] = h * 1.33
if len(vals) > 3:
xmag = float(vals[3])
if len(vals) > 4:
rot = float(vals[4]) * -1 * math.pi / 180.0
f.params[f.XYANGLE] = rot
if len(vals) > 5:
skew = float(vals[5])
def setup_log_table(log_flag, maxltsize, colors, save_release):
# try to match convoluted Fractint log_table logic
(lf,mlf) = get_log_table_limits(log_flag, maxltsize, colors, save_release)
table = [
calc_log_table_entry(x,log_flag,lf,mlf, save_release) \
for x in xrange(maxltsize)
]
return table
def calc_log_table_entry(n, log_flag, lf,mlf, save_release):
if log_flag > 0:
if n <= lf:
return 1
try:
if (n-lf) / math.log(n - lf) <= mlf:
if save_release < 2002:
if lf:
flag = 1
else:
flag - 0
return n - lf + flag
else:
return n - lf
except ZeroDivisionError:
pass
return int(mlf * math.log(n - lf)) + 1
return 0
def get_log_table_limits(log_flag, maxltsize, colors, save_release):
if save_release > 1920:
if log_flag > 0:
lf = log_flag
if log_flag < 1:
lf = 0
if lf >= maxltsize:
lf = maxltsize -1
if lf != 0:
delta = 2
else:
delta = 1
mlf = (colors - delta ) /math.log(maxltsize - lf)
return (lf,mlf)
def decode_val(c):
if c >= '0' and c <= '9':
return 4 *(ord(c) - ord('0'))
elif c >= 'A' and c <= 'Z':
return 4 * (ord(c) - ord('A') + 10)
elif c == '_':
return 4 * 36
elif c == '`':
return 4 * 37
elif c >= 'a' and c <= 'z':
return 4 * (ord(c) - ord('a') + 38)
else:
raise RuntimeError, "Invalid character %s in colors" % c
def colorRange(s):
'''From help4.src:
The colors= parameter in a PAR entry is a set of triplets. Each
triplet represents a color in the saved palette. The triplet is
made from the red green and blue components of the color in the
palette entry. The current limitations of fractint\'s palette
handling capabilities restrict the palette to 256 colors. Each
triplet rgb component is a 6 bit value from 0 to 63. These values
are encoded using the following scheme:
rgb value => encoded value
0 - 9 => 0 - 9
10 - 35 => A - Z
36 - 37 => _ - `
38 - 63 => a - z
In addition, Pieter Branderhorst has incorporated a way to
compress the encoding when the image has smooth-shaded ranges.
These ranges are written as <nn> with the nn representing the
number of entries between the preceeding triplet and the following
triplet.'''
colors = []
i = 0
runlength = 0
while i < len(s):
c = s[i]
if c == '<':
j = string.find(s,">", i)
if j == -1:
raise RuntimeError, "No > after < in colors"
runlength = string.atoi(s[i+1:j])
if runlength == 0:
raise RuntimeError, "Zero runlength"
i = j+1
else:
if len(s) < i+3:
raise RuntimeError, "invalid color string"
rgb = map(decode_val, list(s[i:i+3]))
if runlength > 0:
if len(colors) == 0:
raise RuntimeError, "run with no preceding color"
pairs = zip(colors[-1],rgb)
for k in range(0,runlength):
ratio = (k+1.0) / runlength
nratio = 1.0 - ratio
col = map(lambda (x,y) : int(x * nratio + y * ratio), pairs)
colors.append(col)
colors.append(rgb)
i += 3
runlength = 0
return colors
if __name__ == "__main__":
import sys
import fc
import fractal
g_comp = fc.Compiler()
g_comp.add_func_path("../formulas")
g_comp.load_formula_file("gf4d.frm")
g_comp.load_formula_file("test.frm")
g_comp.load_formula_file("gf4d.cfrm")
f = fractal.T(g_comp)
file = open(sys.argv[1])
parse(file,f)
f.save(open("parfile.fct","w"))
/*
https://github.com/edyoung/gnofract4d/blob/master/formulas/standard.ucl
comment {
This file contains standard coloring algorithms for Ultra Fractal 3.
Many of the coloring algorithms here were written by other formula
authors, as noted in the comments with each formula. All formulas
have been edited and simplified by Frederik Slijkerman.
}
*/
Triangle {
;
; Variation on the Triangle Inequality Average coloring method
; from Kerry Mitchell. The smoothing used here is based on the
; Smooth formula, which only works for z^n+c and derivates.
;
; Written by Damien M. Jones
;
init:
float sum = 0.0
float sum2 = 0.0
float ac = cabs(#pixel)
float il = 1/log(@power)
float lp = log(log(@bailout)/2.0)
float az2 = 0.0
float lowbound = 0.0
float f = 0.0
BOOL first = true
loop:
sum2 = sum
IF (!first)
az2 = cabs(#z - #pixel)
lowbound = abs(az2 - ac)
sum = sum + ((cabs(#z) - lowbound) / (az2+ac - lowbound))
ELSE
first = false
ENDIF
final:
sum = sum / (#numiter)
sum2 = sum2 / (#numiter-1)
f = il*lp - il*log(log(cabs(#z)))
#index = sum2 + (sum-sum2) * (f+1)
default:
title = "Triangle Inequality Average"
helpfile = "Uf3.chm"
helptopic = "Html/coloring/standard/triangleinequalityaverage.html"
param power
caption = "Exponent"
default = 2.0
hint = "This should be set to match the exponent of the \
formula you are using. For Mandelbrot, this is 2."
endparam
param bailout
caption = "Bailout"
default = 1e20
min = 1
hint = "This should be set to match the bail-out value in \
the Formula tab. Use a very high value for good results."
endparam
}