一条匝道每小时有 200 辆车到达,匝道流量控制装置每小时只允许 250 辆车通行,而匝道可以容纳 40 辆车,超过则会溢出。
(A) 匝道半满、空载和满载的概率是多少?
(B) 我们预计匝道上有多少辆车?
ρ = 200 / 250 = 0.8 {\displaystyle \rho =200/250=0.8\,\!}
部分 (A)
匝道半满、空载和满载的概率是多少?
半满
P ( n ) = ( 1 − ρ ) 1 − ρ N + 1 ( ρ ) n → P ( 20 ) = ( 1 − 0.8 ) 1 − 0.8 40 + 1 ( 0.8 ) 20 = 0.0023 {\displaystyle P(n)={\frac {\left({1-\rho }\right)}{1-\rho ^{N+1}}}\left(\rho \right)^{n}\to P(20)={\frac {\left({1-0.8}\right)}{1-0.8^{40+1}}}\left({0.8}\right)^{20}=0.0023\,\!}
空载
P ( n ) = ( 1 − ρ ) 1 − ρ N + 1 ( ρ ) n → P ( 0 ) = ( 1 − 0.8 ) 1 − 0.8 40 + 1 ( 0.8 ) 0 = 0.20 {\displaystyle P(n)={\frac {\left({1-\rho }\right)}{1-\rho ^{N+1}}}\left(\rho \right)^{n}\to P(0)={\frac {\left({1-0.8}\right)}{1-0.8^{40+1}}}\left({0.8}\right)^{0}=0.20\,\!}
满载
P ( n ) = ( 1 − ρ ) 1 − ρ N + 1 ( ρ ) n → P ( 40 ) = ( 1 − 0.8 ) 1 − 0.8 40 + 1 ( 0.8 ) 40 = 2.65 ∗ 10 − 5 {\displaystyle P(n)={\frac {\left({1-\rho }\right)}{1-\rho ^{N+1}}}\left(\rho \right)^{n}\to P(40)={\frac {\left({1-0.8}\right)}{1-0.8^{40+1}}}\left({0.8}\right)^{40}=2.65*10^{-5}\,\!}
部分 (B)
我们预计匝道上有多少辆车?
E ( n ) = ( ρ ) ( 1 − ρ ) 1 − ( N + 1 ) ( ρ ) N + N ρ N + 1 1 − ρ N + 1 = ( 0.8 ) ( 1 − 0.8 ) 1 − ( 40 + 1 ) ( 0.8 ) 40 + 40 ( 0.8 ) 40 + 1 1 − ( 0.8 ) 40 + 1 = 4 {\displaystyle E(n)={\frac {\left(\rho \right)}{\left({1-\rho }\right)^{}}}{\frac {1-\left({N+1}\right)\left(\rho \right)^{N}+N\rho ^{N+1}}{1-\rho ^{N+1}}}={\frac {\left({0.8}\right)}{\left({1-0.8}\right)^{}}}{\frac {1-\left({40+1}\right)\left({0.8}\right)^{40}+40\left({0.8}\right)^{40+1}}{1-\left({0.8}\right)^{40+1}}}=4\,\!}