跳转到内容

GLSL 编程/Unity/照明纹理表面

来自维基教科书,开放的书籍,为开放的世界
从阿波罗 8 号看到的地球升起。

本教程涵盖了纹理表面的逐顶点光照

它结合了“纹理球体”部分“镜面高光”部分的着色器代码,以计算具有由纹理确定的漫射材质颜色的光照。如果你还没有阅读这些部分,这将是一个很好的机会去阅读它们。

纹理和漫射逐顶点光照

[编辑 | 编辑源代码]

“纹理球体”部分中,纹理颜色用作片段着色器的输出。然而,也可以将纹理颜色用作光照计算中的任何参数,特别是材质常数 用于漫射反射,这在“漫射反射”部分中介绍。它出现在 Phong 反射模型的漫射部分

其中此方程式用于红色、绿色和蓝色三个颜色分量的不同材质常数。通过使用纹理来确定这些材质常数,它们可以在表面上变化。

着色器代码

[编辑 | 编辑源代码]

“镜面高光”部分中的逐顶点光照相比,这里的顶点着色器计算了两种不同的颜色:diffuseColor 在片段着色器中与纹理颜色相乘,而 specularColor 只是镜面项,不应与纹理颜色相乘。这是完全合理的,但由于历史原因(即功能较弱的旧图形硬件),有时被称为“独立镜面颜色”;事实上,Unity 的 ShaderLab 有一个称为“SeparateSpecular”的选项来激活或停用它。

请注意,包含了一个属性 _Color,它被(逐分量地)乘以 diffuseColor 的所有部分;因此,它充当有用的颜色过滤器,可以对纹理颜色进行着色或阴影。此外,需要具有此名称的属性才能使回退着色器工作(另请参阅“漫射反射”部分中关于回退着色器的讨论)。

Shader "GLSL per-vertex lighting with texture" {
   Properties {
      _MainTex ("Texture For Diffuse Material Color", 2D) = "white" {} 
      _Color ("Overall Diffuse Color Filter", Color) = (1,1,1,1)
      _SpecColor ("Specular Material Color", Color) = (1,1,1,1) 
      _Shininess ("Shininess", Float) = 10
   }
   SubShader {
      Pass {      
         Tags { "LightMode" = "ForwardBase" } 
            // pass for ambient light and first light source
 
         GLSLPROGRAM
 
         // User-specified properties
         uniform sampler2D _MainTex; 
         uniform vec4 _Color;
         uniform vec4 _SpecColor; 
         uniform float _Shininess;
 
         // The following built-in uniforms (except _LightColor0) 
         // are also defined in "UnityCG.glslinc", 
         // i.e. one could #include "UnityCG.glslinc" 
         uniform vec3 _WorldSpaceCameraPos; 
            // camera position in world space
         uniform mat4 _Object2World; // model matrix
         uniform mat4 _World2Object; // inverse model matrix
         uniform vec4 _WorldSpaceLightPos0; 
            // direction to or position of light source
         uniform vec4 _LightColor0; 
            // color of light source (from "Lighting.cginc")
 
         varying vec3 diffuseColor; 
            // diffuse Phong lighting computed in the vertex shader
         varying vec3 specularColor; 
            // specular Phong lighting computed in the vertex shader
         varying vec4 textureCoordinates; 
 
         #ifdef VERTEX
 
         void main()
         {                                
            mat4 modelMatrix = _Object2World;
            mat4 modelMatrixInverse = _World2Object; // unity_Scale.w 
               // is unnecessary because we normalize vectors
 
            vec3 normalDirection = normalize(vec3(
               vec4(gl_Normal, 0.0) * modelMatrixInverse));
            vec3 viewDirection = normalize(vec3(
               vec4(_WorldSpaceCameraPos, 1.0) 
               - modelMatrix * gl_Vertex));
            vec3 lightDirection;
            float attenuation;
 
            if (0.0 == _WorldSpaceLightPos0.w) // directional light?
            {
               attenuation = 1.0; // no attenuation
               lightDirection = normalize(vec3(_WorldSpaceLightPos0));
            } 
            else // point or spot light
            {
               vec3 vertexToLightSource = vec3(_WorldSpaceLightPos0 
                  - modelMatrix * gl_Vertex);
               float distance = length(vertexToLightSource);
               attenuation = 1.0 / distance; // linear attenuation 
               lightDirection = normalize(vertexToLightSource);
            }
 
            vec3 ambientLighting = 
               vec3(gl_LightModel.ambient) * vec3(_Color);
 
            vec3 diffuseReflection = 
               attenuation * vec3(_LightColor0) * vec3(_Color) 
               * max(0.0, dot(normalDirection, lightDirection));
 
            vec3 specularReflection;
            if (dot(normalDirection, lightDirection) < 0.0) 
               // light source on the wrong side?
            {
               specularReflection = vec3(0.0, 0.0, 0.0); 
                  // no specular reflection
            }
            else // light source on the right side
            {
               specularReflection = attenuation * vec3(_LightColor0) 
                  * vec3(_SpecColor) * pow(max(0.0, dot(
                  reflect(-lightDirection, normalDirection), 
                  viewDirection)), _Shininess);
            }
 
            diffuseColor = ambientLighting + diffuseReflection;
            specularColor = specularReflection;
            textureCoordinates = gl_MultiTexCoord0;
            gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
         }
 
         #endif
 
         #ifdef FRAGMENT
 
         void main()
         {
            gl_FragColor = vec4(diffuseColor 
               * vec3(texture2D(_MainTex, vec2(textureCoordinates)))
               + specularColor, 1.0);
         }
 
         #endif
 
         ENDGLSL
      }
 
      Pass {      
         Tags { "LightMode" = "ForwardAdd" } 
            // pass for additional light sources
         Blend One One // additive blending 
 
         GLSLPROGRAM
 
         // User-specified properties
         uniform sampler2D _MainTex; 
         uniform vec4 _Color;
         uniform vec4 _SpecColor; 
         uniform float _Shininess;
 
         // The following built-in uniforms (except _LightColor0) 
         // are also defined in "UnityCG.glslinc", 
         // i.e. one could #include "UnityCG.glslinc" 
         uniform vec3 _WorldSpaceCameraPos; 
            // camera position in world space
         uniform mat4 _Object2World; // model matrix
         uniform mat4 _World2Object; // inverse model matrix
         uniform vec4 _WorldSpaceLightPos0; 
            // direction to or position of light source
         uniform vec4 _LightColor0; 
            // color of light source (from "Lighting.cginc")
 
         varying vec3 diffuseColor; 
            // diffuse Phong lighting computed in the vertex shader
         varying vec3 specularColor; 
            // specular Phong lighting computed in the vertex shader
         varying vec4 textureCoordinates; 
 
         #ifdef VERTEX
 
         void main()
         {                                
            mat4 modelMatrix = _Object2World;
            mat4 modelMatrixInverse = _World2Object; // unity_Scale.w 
               // is unnecessary because we normalize vectors
 
            vec3 normalDirection = normalize(vec3(
               vec4(gl_Normal, 0.0) * modelMatrixInverse));
            vec3 viewDirection = normalize(vec3(
               vec4(_WorldSpaceCameraPos, 1.0) 
               - modelMatrix * gl_Vertex));
            vec3 lightDirection;
            float attenuation;
 
            if (0.0 == _WorldSpaceLightPos0.w) // directional light?
            {
               attenuation = 1.0; // no attenuation
               lightDirection = normalize(vec3(_WorldSpaceLightPos0));
            } 
            else // point or spot light
            {
               vec3 vertexToLightSource = vec3(_WorldSpaceLightPos0 
                  - modelMatrix * gl_Vertex);
               float distance = length(vertexToLightSource);
               attenuation = 1.0 / distance; // linear attenuation 
               lightDirection = normalize(vertexToLightSource);
            }
 
            vec3 diffuseReflection = 
               attenuation * vec3(_LightColor0) * vec3(_Color) 
               * max(0.0, dot(normalDirection, lightDirection));
 
            vec3 specularReflection;
            if (dot(normalDirection, lightDirection) < 0.0) 
               // light source on the wrong side?
            {
               specularReflection = vec3(0.0, 0.0, 0.0); 
                  // no specular reflection
            }
            else // light source on the right side
            {
               specularReflection = attenuation * vec3(_LightColor0) 
                  * vec3(_SpecColor) * pow(max(0.0, dot(
                  reflect(-lightDirection, normalDirection), 
                  viewDirection)), _Shininess);
            }
 
            diffuseColor = diffuseReflection;
            specularColor = specularReflection;
            textureCoordinates = gl_MultiTexCoord0;
            gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
         }
 
         #endif
 
         #ifdef FRAGMENT
 
         void main()
         {
            gl_FragColor = vec4(diffuseColor 
               * vec3(texture2D(_MainTex, vec2(textureCoordinates)))
               + specularColor, 1.0);
         }
 
         #endif
 
         ENDGLSL
      }
   } 
   // The definition of a fallback shader should be commented out 
   // during development:
   // Fallback "Specular"
}

为了将纹理图像分配给此着色器,你应该按照“纹理球体”部分中讨论的步骤进行操作。

恭喜你,你已经到达了结尾。我们已经看过了

  • 纹理和逐顶点光照通常是如何结合的。
  • 什么是“独立镜面颜色”。

进一步阅读

[编辑 | 编辑源代码]

如果你还想了解更多


< GLSL 编程/Unity

除非另有说明,否则本页上的所有示例源代码都授予公有领域。
华夏公益教科书