证明: 如果 是连通的,假设 是闭集,使得 。令 和 。那么 ,因此我们发现 。然后假设 是闭开集(即开集且闭集),并且 。那么 是两个非平凡闭集的不交并,矛盾。最后,如果 并且 ,那么 和 都是闭开集。
例如(实数轴上的两个不交开球是不连通的):
考虑 的子空间 ,配备子空间拓扑。它是一个不连通空间的例子。
Proof: Suppose that and are two open subsets of such that and . By definition of the subspace topology, write and , where are open in . Since is continuous, and are open in . Further, , since any element in would be mapped to . Finally, every element in is either mapped to or to , so that , and is not connected, a contradiction.
示例(闭合单位区间是连通的):
设 带有由 上的欧几里得拓扑诱导的拓扑。那么 是连通的。
Proof: Let be two open subsets of so that and . Suppose by renaming if necessary that . has an infimum, say . Since , pick by openness of an such that . Then , so that . Suppose that . Then for some , so that in particular , a contradiction to . Hence , but then pick so that and obtain that , a contradiction.
命题(拓扑空间分解成连通分量):
设 是一个拓扑空间。那么
- ,
其中并集是不交的,并且每个 是其每个点的连通分量。
Proof: We prove that being contained within a common connected set is an equivalence relation, thereby proving that is partitioned into the equivalence classes with respect to that relation, thereby proving the claim. Indeed, it is certainly reflexive and symmetric. To prove it transitive, let and , where and are connected. We claim that is connected; once this is proven, and will lie in a common connected set (). Hence, let , where are open with respect to the subspace topology on , that is, , for suitable that are open in . Since is connected, or since and . Suppose, by renaming , if necessary, that , that is, . Note that by a similar argument, or , but is impossible, since then . Hence, and , so that , and is connected.
定义(路径):
设 是一个拓扑空间。**路径**是一个连续函数 ,其中 。
命题(路径的连接是连续的):
设 和 是两条路径。那么 是连续的。
证明: 我们有
- 和 ,
两者都是连续的。我们得出结论,因为当限制在一个覆盖空间的两个闭合子集时连续的函数是连续的。
也就是说,一个空间是路径连通的当且仅当在任意两点之间存在一条路径。
命题(路径连通蕴含连通):
设 是一个路径连通的拓扑空间。 那么 也是连通的。
Proof: Suppose that , where are open and . Suppose there exist and , so that and are both proper nonempty subsets of . Then consider by path-connectedness a path such that and . is a connected subspace of since is a continuous image of the closed unit interval which is connected, and is then connected as the continuous image of a connected set, since the continuous image of a connected space is connected. On the other hand, and , where and are both open with respect to the subspace topology on , so that is not connected, a contradiction.
命题(路径连通性是等价关系):
设 是任何拓扑空间。 那么关系
是一个等价关系。
证明: 对于自反性,注意到常数函数始终是连续的。 对于对称性,注意到如果我们给定 使得 且 ,我们可以考虑路径
- ,
它是连续函数的复合,并且具有以下性质: 和 。最后,每当我们有一个路径 使得 和 ,以及另一个路径 使得 和 ,那么 是一个路径,使得 和 ,因此传递性成立。
这里我们有一个关于路径连通性意味着连通性的事实的部分逆命题。路径连通性意味着连通性
定理(局部路径连通空间中连通性和路径连通性的等价性):
设 是一个局部路径连通的拓扑空间。则 连通当且仅当它路径连通。
**证明:**首先注意到路径连通空间是连通的。然后假设 是连通的,固定 ,并定义集合
- .
Note that is open, since if , then by local path-connectedness we may pick a path-connected open neighbourhood of , so that by applying concatenation, we see that all points in are in . On the other hand, is open, pretty much by the same argument: If and is a path-connected open neighbourhood of , then , since if would contain a point of , could be joined to by a path, concatenating a path from to to one from , in contradiction to . Hence is open and closed, and since , , so that by connectedness.
此定理有一个重要的应用:它证明了流形连通当且仅当它路径连通。此外,在本书的后面,我们将了解更多局部路径连通的空间类别,例如单纯复形和 CW 复形。
在上面的定义中将“连通”替换为“路径连通”,我们得到
- 证明:只要 是一个连通拓扑空间, 是一个拓扑空间, 是一个连续函数,那么 由 诱导的子空间拓扑是连通的。
- 证明:类似地,如果 是一个路径连通拓扑空间, 是一个拓扑空间, 连续,那么 由 诱导的子空间拓扑是路径连通的。
- 证明:拓扑空间 是连通的当且仅当:当 对于 表示示性函数,唯一连续的示性函数是 和 ;这里 具有离散拓扑。
- 令 具有由 的欧几里得拓扑诱导的子空间拓扑。证明: 不是局部连通的,证明: 没有连通邻域。