跳转至内容

群论/正规子群和诺特同构定理

来自维基教科书,开放的书本,为了开放的世界

定义(正规子群):

是一个群。一个子群 被称为正规子群 当且仅当对于每个 我们有 .

命题(不相交的正规子群的元素可交换):

是一个群,设 使得 。那么 .

证明:。由于 是一个正规子群,,所以存在 使得 。类似地,由于 ,存在 使得 。那么 ,因此 ,并且由于 ,我们得到 ,使得 ,并且由于 是任意的,

命题(群内直积的刻画):

为一个群,并令 的子群。考虑由这些子群生成的群 。以下等价

  1. 函数 是一个同构
  2. 对于 ,我们有
  3. 中的每个元素都可以唯一地写成乘积 ,其中对于 ,我们有

Proof: Certainly 1. 2., since for all , the subgroup of corresponds via to the subgroup , which is certainly normal. For 2. 3., observe that any element of may be written as a product , where and each is an element of some . But by 2., the are pairwise disjoint, so that any elements in distinct commute. Hence, we may sort the product so that the first few entries are in , the following entries are in and so on. The products of the entries that are contained within then form the element as required by the decomposition in 3. Finally, for 3. 1., observe that 3. implies that the given function is bijective. But it is also a homomorphism, because 3. immediately implies that the are disjoint, and we may use that elements of disjoint normal subgroups commute to obtain that indeed commutes with the respective group laws.

定义(子群乘积):

为一个群,并令 为子群。那么 的 **子群乘积** 定义为

.

通常情况下,子群乘积不是一个子群。但是,如果乘积中涉及的其中一个子群是正规子群,那么它就是

命题(子群与正规子群的子群乘积是子群):

为一个群,设 为子群,其中 之一为正规子群。那么 都是 的子群。

证明:不失一般性,假设 为正规子群。设 ,其中 。那么

对于某个 ,因为 为正规子群(这里我们应用了 子群判别准则)。类似地, 是一个子群。

命题(正规子群的乘积是正规的):

为一个群,设 的正规子群。那么 ,即 的正规子群,且对于 亦然。

证明: 由于对称性,只需证明 是一个正规子群。事实上,设 以及 ,其中 以及 。那么

对于某些 ,因为 是正规的。

  1. 证明正规子群的交集也是正规的。
  2. 是一个群,并且设 这样 是两两互素的。证明
华夏公益教科书