群论/单群与西罗定理
此页面最后编辑于 72 个月前,可能已被弃用 此页面自 2018 年 9 月 9 日起未进行编辑,但本书中的其他页面可能已被编辑。查看相关更改,了解本书的状态。 您可以通过编辑和更新本书来提供帮助。如果此页面没有被积极编辑,请删除 {{正在建设中}} 。在 WB:PROJECTS 寻求帮助。 |
定义(西罗 p-子群):
令 是一个群,令 是一个素数,使得 。那么 的一个西罗 -子群 是一个子群 ,使得 ,其中 是使 成立的最大值。
定理(柯西定理):
令 是一个群,其阶 可被素数 整除。那么 包含一个阶为 的元素。
证明: 通过共轭作用于自身。令 是共轭类的代表系。类方程给出
- .
Either, there exists such that is both not and not divisible by , in which case we may conclude by induction on the group order, noting that divides and , or for all the number is either or divisible by ; but in this case, by taking the class equation , we obtain that is nontrivial and moreover that its order is divisible by . Hence, it suffices to consider the case where is an abelian group. Take then any element . If has order divisible by , raising to a sufficiently high power will produce an element of order . Otherwise, the order of is divisible by , and by induction we find an element whose order is divisible by . Then the order of will also be divisible by , because otherwise, passing to the quotient, for some not divisible by .
定理(西罗定理):
令 是一个有限群,使得 ,其中 。那么以下成立
- 具有一个 Sylow 子群。
- 对 Sylow 子群的共轭作用是可迁的。
- 如果 是 Sylow -子群的数量,则 且 。
- 每个 -子群 都包含在某些 Sylow -子群 中。
定义 (简单群):
如果 和 是 唯一的正规子群(其中 表示单位元),则群 是一个简单群。