控制/稳定性分析/连续时间/二次稳定裕度中的LMI
The quadratic stability margin of the system is defined as the largest α ≥ 0 for which the system is quadratically stable. This LMI applies for systems with norm-bounded uncertainty. {\displaystyle {\begin{aligned}{\text{The quadratic stability margin of the system is defined as the largest }}\alpha \geq 0{\text{ for which the system is quadratically stable.}}{\text{This LMI applies for systems with norm-bounded uncertainty.}}\end{aligned}}}
矩阵 A , B p , C q {\displaystyle A,B_{p},C_{q}} .
Maximize β = α 2 subject to the LMI constraint. {\displaystyle {\text{Maximize }}\beta =\alpha ^{2}{\text{ subject to the LMI constraint.}}}
如果存在一个 α ≥ 0 {\displaystyle \alpha \geq 0} ,那么该系统是二次稳定的,稳定裕度是最大的 α {\displaystyle \alpha } 。
https://github.com/mcavorsi/LMI
参数化、范数有界不确定系统二次稳定性
结构化、范数有界不确定性的稳定性
任意切换下的稳定性