控制中的LMI/页面/离散时间H无穷最优观测器
在许多应用中,甚至大多数应用中,系统的状态无法直接得知。在这种情况下,你需要战略性地测量关键的系统输出,以便间接观察系统状态。为了使估计值准确,观测器需要比系统动力学更快地收敛。因此,最优观测器综合是有利的。在这个LMI中,我们寻求优化H无穷范数,从概念上讲,就是最小化观测器误差的最大幅度。
这个LMI需要的系统是一个离散时间LTI工厂
,它具有状态空间实现

其中
是状态向量,
是状态矩阵,
是输入矩阵,
是外源输入,
是输出矩阵,
是直通矩阵,
是输出,并假设
是可检测的。
矩阵
.
一种形式的观测器

设计一个观察器,其中
是观察器增益。
定义误差状态
,误差动力学发现为
,
性能输出定义为
.
观察器增益
旨在设计,使得从
到
的传递矩阵的
最小化,由下式给出:
被最小化。
离散时间
最优观测器增益通过求解
,
,和
来合成,这些值最小化 J
,受限于
,以及

该
-最优观测器增益可以通过
恢复,并且
范数为
。然后,可以使用该观测器增益矩阵来构建最优观测器,该观测器由以下公式给出:

此实现需要 Yalmip 和 Sedumi。
https://github.com/rezajamesahmed/LMImatlabcode/blob/master/Hinfobsdiscretetime.m
混合 H2-Hinfinity 离散时间观测器
离散时间_H2-最优观测器
此 LMI 来自 Ryan Caverly 关于 LMI 的文本(第 5.2.2 节)
其他资源