考虑以下驱动的 RLC 电路。确定电路中的电流 y(t),给定输入为 。初始电流为 0A,电容器两端的初始电压为 2V。
回顾电感器、电阻器和电容器两端的电压与电流的关系如下:
根据基尔霍夫电压定律,我们得到回路方程,将 i 替换为 y(t)
对 t 求导,我们得到:
代入值,得到描述该系统的微分方程:
我们想把它写成以下形式:
现在我们有了方程,就可以开始求响应了。
零输入响应(ZIR)是电路在输入为零时的行为。因此,要解的微分方程为:
我们期望在这里看到的是电容器通过电阻器和电感器放电其初始电荷,这受初始条件的影响。元件值的比率将决定阻尼。让我们先看一下这个,了解一下电路的行为。
该方程也可以写成:
- ,
其中ζ 是阻尼比,ω0 是谐振频率,在微分方程中可以找到,它是多项式中的常数项
因此,我们可以解出ζ
因此,该系统是过阻尼的,所以我们预计看到电流上升和衰减到零,没有振荡。
在计算零输入响应(ZIR)之前,还需要考虑初始条件。我们从问题中知道初始电流为零。但是,电流的导数没有明确给出。然而,电容器两端的电压是已知的,所以我们可以回到回路电压方程
我们知道输入为零,电容器两端有 2V 电压。此外,由于电流为零,电阻器两端电流也为零。因此
电感器两端的电压与电流的导数相关联
现在我们有了足够的初始条件
特征方程为
我们得到了特征根
通解是
应用初始条件
求解这些联立方程,得到
零输入响应现在是
为了找到单位输入响应,h(t),我们考虑与上面的零输入情况相同的微分方程,但是我们将电路的所有值(电流和电压)都设为零。为此,我们指定以下初始条件,以找到系统特征模式的总和,yn(t)。
通用解与之前相同
通解是
但是,求解系数会得到不同的特解
现在,回想一下,描述电路的原始微分方程在右手边有一个微分算子,P(D),作用于输入。因为我们现在应用了一个输入,所以我们必须考虑这一点。这是通过将其应用于yn(t)来实现的。在本例中,它是一个单导数。其结果就是单位冲激响应。
请注意,这在t=0时不为零,这似乎与我们的条件相矛盾。但是,由于单位冲激持续了无限短的时间,电路必须立即“跳跃”到不同的总能量,否则它永远不会被冲激激发。在现实生活中,一个有限持续时间的信号会导致电路逐渐上升,而不是跳跃。
零状态响应,ys(t) 是初始松弛电路对输入x(t) 的响应。这可以通过单位冲激响应和输入的卷积来求得
根据卷积的定义
乘以整个式子
因为积分是关于τ 的,所以我们可以将t 项提出来
最后,乘以整个式子并合并指数项,我们就得到了零状态响应
请注意,电流在 *t*=0 时再次变为零。对于任何实际信号,由于电感不允许电流发生阶跃变化,这种情况都会发生。
总响应由零输入和零状态分量的总和给出
我们可以将零输入、零状态、单位脉冲和总响应一起绘制