跳转到内容

拓扑模/哈恩-巴拿赫定理

来自维基教科书,开放的书籍,为开放的世界

定理(几何哈恩-巴拿赫定理):

为实拓扑向量空间,且 为开凸集,使得 。那么存在一个超平面 不与 相交。

(在选择公理的条件下。)

证明: 中所有不与 相交的向量子空间的集合是归纳的,并且非空的(因为零子空间)。因此,由佐恩引理,选取一个最大向量子空间 ,它不与 相交。断言 是一个超平面。如果不是,则 的维度 。现在,正则映射 是开映射,因此 中的开凸集。我们考虑锥

and note that it has a nonzero boundary point; for otherwise would be clopen in which is path-connected (indeed by assumption , so that for any two points we find a 2-dimensional plane containing both, and by using a "corner point" when do lie on a line through the origin, we may connect them in , because a segment in a TVS yields a continuous path by continuity of addition and scalar multiplication), so that , which is impossible because for any in , we then have , for , so that by convexity, a contradiction. Hence, let . Then the line generated by does not intersect and hence not , and is a larger subspace of that does not intersect than in contradiction to the maximality of the latter.

华夏公益教科书