f X ( x ) = { 3 x 2 2 x ∈ [ − 1 , 1 ] 0 e l s e f Y ( y ) = { y 9 y ∈ [ 4 , 5 ] 0 e l s e X and Y are independent RVs, find f X + Y ( z ) {\displaystyle f_{X}(x)={\begin{cases}{\frac {3x^{2}}{2}}&x\in [-1,1]\\0&else\end{cases}}\qquad f_{Y}(y)={\begin{cases}{\frac {y}{9}}&y\in [4,5]\\0&else\end{cases}}\qquad X{\mbox{ and }}Y{\mbox{ are independent RVs, find }}f_{X+Y}(z)}