跳到内容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
目录
移至侧边栏
隐藏
开始
1
假设
2
证明
3
备注
切换目录
0.999.../利用等比数列公式证明
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
Wikidata item
外观
移至侧边栏
隐藏
来自维基教科书,自由的教科书
<
0.999...
假设
[
编辑
|
编辑源代码
]
级数定义
等比数列公式
证明
[
编辑
|
编辑源代码
]
利用无穷小数的值的级数定义,
0.999
…
=
9
(
1
10
)
+
9
(
1
10
)
2
+
9
(
1
10
)
3
+
⋯
.
{\displaystyle 0.999\ldots =9\left({\tfrac {1}{10}}\right)+9\left({\tfrac {1}{10}}\right)^{2}+9\left({\tfrac {1}{10}}\right)^{3}+\cdots .\,}
这是一个公比为1/10的等比数列。运用等比数列公式,
0.999
…
=
9
(
1
10
)
+
9
(
1
10
)
2
+
9
(
1
10
)
3
+
⋯
=
9
(
1
10
)
1
−
1
10
=
1.
{\displaystyle 0.999\ldots =9\left({\tfrac {1}{10}}\right)+9\left({\tfrac {1}{10}}\right)^{2}+9\left({\tfrac {1}{10}}\right)^{3}+\cdots ={\frac {9\left({\tfrac {1}{10}}\right)}{1-{\tfrac {1}{10}}}}=1.\,}
备注
[
编辑
|
编辑源代码
]
回顾一下,
∑
n
=
0
∞
a
x
n
=
lim
t
→
∞
a
(
1
−
x
t
)
1
−
x
=
⏟
Given
|
x
|
<
1
a
1
−
x
{\displaystyle \sum _{n=0}^{\infty }ax^{n}=\lim _{t\to \infty }{\frac {a(1-x^{t})}{1-x}}\underbrace {=} _{{\text{Given }}|x|<1}{\frac {a}{1-x}}}
分类
:
书籍:0.999...
华夏公益教科书