相对论之旅/多普勒效应
当你听到救护车经过时,它的警笛音调会降低。由于救护车在空气中移动而你是静止的,这是由于移动源效应。它的工作原理如下。
假设救护车正远离你,它的警笛周期为T0。在警笛发出一个完整波的时间内,波前向你移动了距离cT0,但救护车却向相反方向移动了距离vT0。因此,波被拉伸到总距离 (cT0 + vT0)
由于这个波以c的速度到达我,它经过我所需的时间T 为 (cT0 + vT0)/c,即
表观周期被 (1 + v/c) 乘子所增加。
(如果你是一位音乐家,你就会知道,一个半音的变化——即一个八度的1/12——是由音调的变化引起的,变化因子是12√2 或者 1.06。这意味着,一辆以 45 英里/小时(相当于声速的 6%)速度行驶的救护车,其警笛经过时将发生一个全音的多普勒频移——在接近时升高一个半音,在远离时降低一个半音。)
现在,光也完全一样。你有没有注意到,除了警笛声音更低,救护车上的所有灯光也看起来更红了吗?没有?好吧,我并不感到惊讶,因为救护车的速度可能达到了声速的很大一部分,但它并没有像光速那样快,所以这种效应不会很明显。
光的论证完全相同,除了由于波长伸长效应而增加外,我们还必须包括由于时间膨胀而增加的部分。我们只需要用T0 替换T0,即
在分子和分母上乘以c 并约去√(c + v) 的因子,最终得到
但我以为你之前说光只有一种多普勒效应。你似乎找到了移动源效应的公式——但移动观察者效应呢?
好的。首先考虑正常的效应(在声音中)。假设你正在吹口哨来引起救护车司机(仍然远离你)的注意。你发送的波(波长为cT0)以 (c - v) 的速度追赶救护车。一个波追上救护车所需的时间是cT0 / (c – v),所以
时间再次增加,因此救护车司机会听到更低的口哨声,但你会注意到,这个公式与移动源效应的公式不同,移动源效应乘以 (1 + v/c),而不是除以 (1 - v/c)。
现在,我们在应用相对论时间膨胀修正时必须小心一点。从我们的角度来看,是救护车司机的时间变慢了。所以,如果我们用T 秒到达救护车,他所用的时间更少。这意味着我们必须除以 ,而不是乘以。因此
令人惊讶的是,这让我们得到了完全相同的公式!
天文学家通常更关心波长的变化而不是周期的变化,但公式本质上是相同的,因为波长与周期成正比。即
我发现光的多普勒频移公式竟然是两个正常的多普勒频移公式的几何平均数,这让我感到很愉快。绘制一些图形将有助于区分这些差异。
从物理学家的角度来看,这里定义为 的多普勒频移因子才是最重要的。从天文学家的角度来看,重要的是波长的变化 ,通常是测量出来的,他们通常会引用恒星的红移因子,其定义为 。不难看出,红移因子 = 多普勒频移因子 - 1
如果光源的速度远小于光速,我们可以使用二项式定理简化公式,如下所示
因此
注意,该表达式只能在星系速度小于光速 20% 的范围内使用。例如,仙女座星系显示出 -0.001 的红移(即它实际上是蓝移的),并且正在以大约 300 公里/秒的速度向我们移动。不过,不用担心碰撞——在 250 万光年之外,它需要 25 亿年才能到达我们!
已经观测到具有非常大红移因子的类星体——例如:类星体 PC1247+3406 的红移为 4.897,因此多普勒频移因子为 5.897,退行速度为光速的 94%。1929 年,埃德温·哈勃发现所有遥远的星系都在远离我们,随后的测量表明,速度和距离之间存在简单的正比关系,可观测宇宙的边缘约为 136 亿光年。如果 PC1247 的红移是由于多普勒效应造成的,除此之外别无其他,那么这似乎表明它距离我们惊人的 128 亿光年。
当然,如果一个星系以等于或大于光速的速度远离我们,我们将无法看到它,因为它发出的所有光都会红移消失。
我想是这样——但重点应该是学术性的,因为你已经多次指出,没有什么能比光速更快。
没错——但实际上,一个星系可能以如此快的速度远离我们,这并非不可能,尽管我们已经讨论了速度的加法等等。宇宙学家认为,遥远星系显示出巨大的红移,不是因为它们在一个固定空间中远离我们,而是因为它们自己处于静止状态——但它们之间的空间在膨胀。
这是什么意思?
想象一下,一群蚂蚁在一个正在被吹大的气球上爬来爬去。
蚂蚁之间的距离一直在增加——但蚂蚁实际上并没有移动。此外,在任何给定的时间,两只有机蚂蚁之间的距离增加的速率与其之间的距离成正比。最终,当气球变得足够大时,将有一对蚂蚁,它们之间的距离增加的速度会超过光速。
我们的宇宙可能就是这样。确实可能存在一些星系以超过光速的速度远离我们!
好吧,正如我之前所说,这个想法是学术性的,因为我们永远无法看到它们或到达那里——即使在理论上也是如此。
是的——你可能没错,虽然有一种可能性,如果宇宙的膨胀减缓,那么其中一些星系可能会再次进入我们的视野。最新的研究似乎表明,事实上,宇宙的膨胀正在加速。如果是这样,我们现在能看到的一些星系将会消失在地平线上,永远不再出现。事实是,我们并不真正知道我们生活在什么样的宇宙中——主要是因为天文学家对它包含多少物质这个问题存在严重分歧。但这又是另一个故事了。
第三个山丘
[edit | edit source]过山车仍然以高速行驶,从螺旋形轨道中出来,向上爬一个平缓的坡度。再次,当它接近山顶时,你有了喘息的机会,可以环顾四周。
嘿!看看那些男孩!太聪明了!
你说得对,确实很聪明。那些男孩正在互相抛一对足球——但他们不仅仅是在玩接球,他们是在让球从对方身上弹回来,这样他们就可以接住他们刚刚扔出去的球。
那一定很难。你说,你必须以恰当的速度抛球,让它回到你身边。如果你扔得太慢,它就没有足够的动量把另一个球弹回它的主人手中。
但你没有时间再看太久。过山车开始了第三次大下降。抓紧了!
令你惊讶的是,你发现一个足球在你腿上,就像孩子们扔的那样。一时兴起,你把它侧着扔出了过山车。就在这时,在你前面,你看到其中一个男孩把球扔向轨道。令你震惊的是,你意识到这两个球正在发生碰撞,但你的球似乎比他的球速度更快。另一方面,对于轨道旁的男孩来说,是你迅速地从他身边经过,(因为你的动作因时间膨胀而变慢)看起来他的球比你的球速度更快。你们每个人都预测球会不对称地反弹到对方。事实上发生的是,两个球完美地反弹,男孩接住了他的球,而你的球落回了你的腿上!这一切都是因为
奇异的结果第 12 号 |
---|
运动物体增加质量 |