跳转到内容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
微积分/微分/微分的定义/解答
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外观
移动到侧边栏
隐藏
来自 Wikibooks,开放世界中的开放书籍
<
微积分
|
微分
|
微分的定义
1. 求曲线
y
=
x
2
{\displaystyle y=x^{2}}
在点
(
1
,
1
)
{\displaystyle (1,1)}
处的切线的斜率。
函数
f
{\displaystyle f}
在
x
0
{\displaystyle x_{0}}
处的斜率的定义是
lim
h
→
0
[
f
(
x
0
+
h
)
−
f
(
x
0
)
h
]
{\displaystyle \lim _{h\to 0}\left[{\frac {f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}}\right]}
代入
f
(
x
)
=
x
2
{\displaystyle f(x)=x^{2}}
和
x
0
=
1
{\displaystyle x_{0}=1}
得到
lim
h
→
0
[
(
1
+
h
)
2
−
1
h
]
=
lim
h
→
0
[
h
2
+
2
h
h
]
=
lim
h
→
0
[
h
(
h
+
2
)
h
]
=
lim
h
→
0
h
+
2
=
2
{\displaystyle {\begin{aligned}\lim _{h\to 0}\left[{\frac {(1+h)^{2}-1}{h}}\right]&=\lim _{h\to 0}\left[{\frac {h^{2}+2h}{h}}\right]\\&=\lim _{h\to 0}\left[{\frac {h(h+2)}{h}}\right]\\&=\lim _{h\to 0}h+2\\&=\mathbf {2} \end{aligned}}}
函数
f
{\displaystyle f}
在
x
0
{\displaystyle x_{0}}
处的斜率的定义是
lim
h
→
0
[
f
(
x
0
+
h
)
−
f
(
x
0
)
h
]
{\displaystyle \lim _{h\to 0}\left[{\frac {f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}}\right]}
代入
f
(
x
)
=
x
2
{\displaystyle f(x)=x^{2}}
和
x
0
=
1
{\displaystyle x_{0}=1}
得到
lim
h
→
0
[
(
1
+
h
)
2
−
1
h
]
=
lim
h
→
0
[
h
2
+
2
h
h
]
=
lim
h
→
0
[
h
(
h
+
2
)
h
]
=
lim
h
→
0
h
+
2
=
2
{\displaystyle {\begin{aligned}\lim _{h\to 0}\left[{\frac {(1+h)^{2}-1}{h}}\right]&=\lim _{h\to 0}\left[{\frac {h^{2}+2h}{h}}\right]\\&=\lim _{h\to 0}\left[{\frac {h(h+2)}{h}}\right]\\&=\lim _{h\to 0}h+2\\&=\mathbf {2} \end{aligned}}}
2. 利用导数的定义求函数
f
(
x
)
=
2
x
+
3
{\displaystyle f(x)=2x+3}
的导数。
f
′
(
x
)
=
lim
Δ
x
→
0
(
2
(
x
+
Δ
x
)
+
3
)
−
(
2
x
+
3
)
Δ
x
=
lim
Δ
x
→
0
2
x
+
2
Δ
x
+
3
−
2
x
−
3
)
Δ
x
=
lim
Δ
x
→
0
2
Δ
x
Δ
x
=
lim
Δ
x
→
0
2
=
2
{\displaystyle {\begin{aligned}f^{'}(x)&=\lim _{\Delta x\to 0}{\frac {(2(x+\Delta x)+3)-(2x+3)}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {2x+2\Delta x+3-2x-3)}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {2\Delta x}{\Delta x}}\\&=\lim _{\Delta x\to 0}2\\&=\mathbf {2} \end{aligned}}}
f
′
(
x
)
=
lim
Δ
x
→
0
(
2
(
x
+
Δ
x
)
+
3
)
−
(
2
x
+
3
)
Δ
x
=
lim
Δ
x
→
0
2
x
+
2
Δ
x
+
3
−
2
x
−
3
)
Δ
x
=
lim
Δ
x
→
0
2
Δ
x
Δ
x
=
lim
Δ
x
→
0
2
=
2
{\displaystyle {\begin{aligned}f^{'}(x)&=\lim _{\Delta x\to 0}{\frac {(2(x+\Delta x)+3)-(2x+3)}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {2x+2\Delta x+3-2x-3)}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {2\Delta x}{\Delta x}}\\&=\lim _{\Delta x\to 0}2\\&=\mathbf {2} \end{aligned}}}
3. 利用导数的定义,求函数
f
(
x
)
=
x
3
{\displaystyle f(x)=x^{3}}
的导数。现在尝试
f
(
x
)
=
x
4
{\displaystyle f(x)=x^{4}}
。你能看出规律吗?在下一节中,我们将找到
f
(
x
)
=
x
n
{\displaystyle f(x)=x^{n}}
对所有
n
{\displaystyle n}
的导数。
d
x
3
d
x
=
lim
Δ
x
→
0
(
x
+
Δ
x
)
3
−
x
3
Δ
x
d
x
4
d
x
=
lim
Δ
x
→
0
(
x
+
Δ
x
)
4
−
x
4
Δ
x
=
lim
Δ
x
→
0
x
3
+
3
x
2
Δ
x
+
3
x
Δ
x
2
+
Δ
x
3
−
x
3
Δ
x
=
lim
Δ
x
→
0
x
4
+
4
x
3
Δ
x
+
6
x
2
Δ
x
2
+
4
x
Δ
x
3
+
Δ
x
4
−
x
4
Δ
x
=
lim
Δ
x
→
0
3
x
2
Δ
x
+
3
x
Δ
x
2
+
Δ
x
3
Δ
x
=
lim
Δ
x
→
0
4
x
3
Δ
x
+
6
x
2
Δ
x
2
+
4
x
Δ
x
3
+
Δ
x
4
Δ
x
=
lim
Δ
x
→
0
3
x
2
+
3
x
Δ
x
+
Δ
x
2
=
lim
Δ
x
→
0
4
x
3
+
6
x
2
Δ
x
+
4
x
Δ
x
2
+
Δ
x
3
=
3
x
2
=
4
x
3
{\displaystyle {\begin{alignedat}{2}{\frac {dx^{3}}{dx}}&=\lim _{\Delta x\to 0}{\frac {(x+\Delta x)^{3}-x^{3}}{\Delta x}}&\qquad {\frac {dx^{4}}{dx}}&=\lim _{\Delta x\to 0}{\frac {(x+\Delta x)^{4}-x^{4}}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {x^{3}+3x^{2}\Delta x+3x\Delta x^{2}+\Delta x^{3}-x^{3}}{\Delta x}}&&=\lim _{\Delta x\to 0}{\frac {x^{4}+4x^{3}\Delta x+6x^{2}\Delta x^{2}+4x\Delta x^{3}+\Delta x^{4}-x^{4}}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {3x^{2}\Delta x+3x\Delta x^{2}+\Delta x^{3}}{\Delta x}}&&=\lim _{\Delta x\to 0}{\frac {4x^{3}\Delta x+6x^{2}\Delta x^{2}+4x\Delta x^{3}+\Delta x^{4}}{\Delta x}}\\&=\lim _{\Delta x\to 0}3x^{2}+3x\Delta x+\Delta x^{2}&&=\lim _{\Delta x\to 0}4x^{3}+6x^{2}\Delta x+4x\Delta x^{2}+\Delta x^{3}\\&=\mathbf {3x^{2}} &&=\mathbf {4x^{3}} \end{alignedat}}}
d
x
3
d
x
=
lim
Δ
x
→
0
(
x
+
Δ
x
)
3
−
x
3
Δ
x
d
x
4
d
x
=
lim
Δ
x
→
0
(
x
+
Δ
x
)
4
−
x
4
Δ
x
=
lim
Δ
x
→
0
x
3
+
3
x
2
Δ
x
+
3
x
Δ
x
2
+
Δ
x
3
−
x
3
Δ
x
=
lim
Δ
x
→
0
x
4
+
4
x
3
Δ
x
+
6
x
2
Δ
x
2
+
4
x
Δ
x
3
+
Δ
x
4
−
x
4
Δ
x
=
lim
Δ
x
→
0
3
x
2
Δ
x
+
3
x
Δ
x
2
+
Δ
x
3
Δ
x
=
lim
Δ
x
→
0
4
x
3
Δ
x
+
6
x
2
Δ
x
2
+
4
x
Δ
x
3
+
Δ
x
4
Δ
x
=
lim
Δ
x
→
0
3
x
2
+
3
x
Δ
x
+
Δ
x
2
=
lim
Δ
x
→
0
4
x
3
+
6
x
2
Δ
x
+
4
x
Δ
x
2
+
Δ
x
3
=
3
x
2
=
4
x
3
{\displaystyle {\begin{alignedat}{2}{\frac {dx^{3}}{dx}}&=\lim _{\Delta x\to 0}{\frac {(x+\Delta x)^{3}-x^{3}}{\Delta x}}&\qquad {\frac {dx^{4}}{dx}}&=\lim _{\Delta x\to 0}{\frac {(x+\Delta x)^{4}-x^{4}}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {x^{3}+3x^{2}\Delta x+3x\Delta x^{2}+\Delta x^{3}-x^{3}}{\Delta x}}&&=\lim _{\Delta x\to 0}{\frac {x^{4}+4x^{3}\Delta x+6x^{2}\Delta x^{2}+4x\Delta x^{3}+\Delta x^{4}-x^{4}}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {3x^{2}\Delta x+3x\Delta x^{2}+\Delta x^{3}}{\Delta x}}&&=\lim _{\Delta x\to 0}{\frac {4x^{3}\Delta x+6x^{2}\Delta x^{2}+4x\Delta x^{3}+\Delta x^{4}}{\Delta x}}\\&=\lim _{\Delta x\to 0}3x^{2}+3x\Delta x+\Delta x^{2}&&=\lim _{\Delta x\to 0}4x^{3}+6x^{2}\Delta x+4x\Delta x^{2}+\Delta x^{3}\\&=\mathbf {3x^{2}} &&=\mathbf {4x^{3}} \end{alignedat}}}
4. 文本指出
|
x
|
{\displaystyle \left|x\right|}
在
x
=
0
{\displaystyle x=0}
处没有定义。利用导数的定义证明这一点。
lim
Δ
x
→
0
−
|
0
+
Δ
x
|
−
|
0
|
Δ
x
=
lim
Δ
x
→
0
−
−
Δ
x
Δ
x
lim
Δ
x
→
0
+
|
0
+
Δ
x
|
−
|
0
|
Δ
x
=
lim
Δ
x
→
0
+
Δ
x
Δ
x
=
lim
Δ
x
→
0
−
−
1
=
lim
Δ
x
→
0
+
1
=
−
1
=
1
{\displaystyle {\begin{alignedat}{2}\lim _{\Delta x\to 0^{-}}{\frac {\left|0+\Delta x\right|-\left|0\right|}{\Delta x}}&=\lim _{\Delta x\to 0^{-}}{\frac {-\Delta x}{\Delta x}}&\qquad \lim _{\Delta x\to 0^{+}}{\frac {\left|0+\Delta x\right|-\left|0\right|}{\Delta x}}&=\lim _{\Delta x\to 0^{+}}{\frac {\Delta x}{\Delta x}}\\&=\lim _{\Delta x\to 0^{-}}-1&&=\lim _{\Delta x\to 0^{+}}1\\&=-1&&=1\end{alignedat}}}
由于在
x
=
0
{\displaystyle x=0}
处左极限和右极限不相等,因此极限不存在,所以
|
x
|
{\displaystyle \left|x\right|}
在
x
=
0
{\displaystyle x=0}
处不可导。
lim
Δ
x
→
0
−
|
0
+
Δ
x
|
−
|
0
|
Δ
x
=
lim
Δ
x
→
0
−
−
Δ
x
Δ
x
lim
Δ
x
→
0
+
|
0
+
Δ
x
|
−
|
0
|
Δ
x
=
lim
Δ
x
→
0
+
Δ
x
Δ
x
=
lim
Δ
x
→
0
−
−
1
=
lim
Δ
x
→
0
+
1
=
−
1
=
1
{\displaystyle {\begin{alignedat}{2}\lim _{\Delta x\to 0^{-}}{\frac {\left|0+\Delta x\right|-\left|0\right|}{\Delta x}}&=\lim _{\Delta x\to 0^{-}}{\frac {-\Delta x}{\Delta x}}&\qquad \lim _{\Delta x\to 0^{+}}{\frac {\left|0+\Delta x\right|-\left|0\right|}{\Delta x}}&=\lim _{\Delta x\to 0^{+}}{\frac {\Delta x}{\Delta x}}\\&=\lim _{\Delta x\to 0^{-}}-1&&=\lim _{\Delta x\to 0^{+}}1\\&=-1&&=1\end{alignedat}}}
由于在
x
=
0
{\displaystyle x=0}
处左极限和右极限不相等,因此极限不存在,所以
|
x
|
{\displaystyle \left|x\right|}
在
x
=
0
{\displaystyle x=0}
处不可导。
6. 利用导数的定义证明
sin
x
{\displaystyle \sin x}
的导数是
cos
x
{\displaystyle \cos x}
。提示:使用合适的积化和差公式,以及
lim
t
→
0
sin
(
t
)
t
=
1
{\displaystyle \lim _{t\to 0}{\frac {\sin(t)}{t}}=1}
和
lim
t
→
0
cos
(
t
)
−
1
t
=
0
{\displaystyle \lim _{t\to 0}{\frac {\cos(t)-1}{t}}=0}
。
lim
Δ
x
→
0
sin
(
x
+
Δ
x
)
−
sin
(
x
)
Δ
x
=
lim
Δ
x
→
0
(
sin
(
x
)
cos
(
Δ
x
)
+
cos
(
x
)
sin
(
Δ
x
)
)
−
sin
(
x
)
Δ
x
=
lim
Δ
x
→
0
sin
(
x
)
(
cos
(
Δ
x
)
−
1
)
+
cos
(
x
)
sin
(
Δ
x
)
Δ
x
=
sin
(
x
)
⋅
lim
Δ
x
→
0
cos
(
Δ
x
)
−
1
Δ
x
+
cos
(
x
)
⋅
lim
Δ
x
→
0
sin
(
Δ
x
)
Δ
x
=
sin
(
x
)
⋅
0
+
cos
(
x
)
⋅
1
=
cos
(
x
)
{\displaystyle {\begin{aligned}\lim _{\Delta x\to 0}{\frac {\sin(x+\Delta x)-\sin(x)}{\Delta x}}&=\lim _{\Delta x\to 0}{\frac {(\sin(x)\cos(\Delta x)+\cos(x)\sin(\Delta x))-\sin(x)}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {\sin(x)(\cos(\Delta x)-1)+\cos(x)\sin(\Delta x)}{\Delta x}}\\&=\sin(x)\cdot \lim _{\Delta x\to 0}{\frac {\cos(\Delta x)-1}{\Delta x}}+\cos(x)\cdot \lim _{\Delta x\to 0}{\frac {\sin(\Delta x)}{\Delta x}}\\&=\sin(x)\cdot 0+\cos(x)\cdot 1\\&=\cos(x)\end{aligned}}}
lim
Δ
x
→
0
sin
(
x
+
Δ
x
)
−
sin
(
x
)
Δ
x
=
lim
Δ
x
→
0
(
sin
(
x
)
cos
(
Δ
x
)
+
cos
(
x
)
sin
(
Δ
x
)
)
−
sin
(
x
)
Δ
x
=
lim
Δ
x
→
0
sin
(
x
)
(
cos
(
Δ
x
)
−
1
)
+
cos
(
x
)
sin
(
Δ
x
)
Δ
x
=
sin
(
x
)
⋅
lim
Δ
x
→
0
cos
(
Δ
x
)
−
1
Δ
x
+
cos
(
x
)
⋅
lim
Δ
x
→
0
sin
(
Δ
x
)
Δ
x
=
sin
(
x
)
⋅
0
+
cos
(
x
)
⋅
1
=
cos
(
x
)
{\displaystyle {\begin{aligned}\lim _{\Delta x\to 0}{\frac {\sin(x+\Delta x)-\sin(x)}{\Delta x}}&=\lim _{\Delta x\to 0}{\frac {(\sin(x)\cos(\Delta x)+\cos(x)\sin(\Delta x))-\sin(x)}{\Delta x}}\\&=\lim _{\Delta x\to 0}{\frac {\sin(x)(\cos(\Delta x)-1)+\cos(x)\sin(\Delta x)}{\Delta x}}\\&=\sin(x)\cdot \lim _{\Delta x\to 0}{\frac {\cos(\Delta x)-1}{\Delta x}}+\cos(x)\cdot \lim _{\Delta x\to 0}{\frac {\sin(\Delta x)}{\Delta x}}\\&=\sin(x)\cdot 0+\cos(x)\cdot 1\\&=\cos(x)\end{aligned}}}
求解以下方程的导数
7.
f
(
x
)
=
42
{\displaystyle f(x)=42}
f
′
(
x
)
=
0
{\displaystyle \mathbf {f'(x)=0} }
f
′
(
x
)
=
0
{\displaystyle \mathbf {f'(x)=0} }
8.
f
(
x
)
=
6
x
+
10
{\displaystyle f(x)=6x+10}
f
′
(
x
)
=
6
{\displaystyle \mathbf {f'(x)=6} }
f
′
(
x
)
=
6
{\displaystyle \mathbf {f'(x)=6} }
9.
f
(
x
)
=
2
x
2
+
12
x
+
3
{\displaystyle f(x)=2x^{2}+12x+3}
f
′
(
x
)
=
4
x
+
12
{\displaystyle \mathbf {f'(x)=4x+12} }
f
′
(
x
)
=
4
x
+
12
{\displaystyle \mathbf {f'(x)=4x+12} }
分类
:
书籍:微积分
华夏公益教科书