Proof: Define , and let (resp. ) be arbitrary. Let and . Since is locally finite, pick a neighbourhood of such that . Since is continuous, by shrinking if necessary, we may assume that for we have . Since is compact, we may choose so that . Now for each arbitrary finite open cover of and for define the distribution
- ,
这实际上是一个所需类型的分布 ( 或 。在上面构建的覆盖的特定情况下,请注意
- .
进一步注意,类型为 的元组,其中 且 是 的一个开覆盖,在以下关系下构成一个有向集
- ,
根据上述计算, 的净值逐点收敛于 。由于来自桶形 LCTVS 到 Hausdorff TVS 的连续线性函数的逐点极限是连续且线性的,我们得出结论。