Proof: Define
, and let
(resp.
) be arbitrary. Let
and
. Since
is locally finite, pick a neighbourhood
of
such that
. Since
is continuous, by shrinking
if necessary, we may assume that for
we have
. Since
is compact, we may choose
so that
. Now for each arbitrary finite open cover
of
and
for
define the distribution
,
这实际上是一个所需类型的分布 (
或
。在上面构建的覆盖的特定情况下,请注意
.
进一步注意,类型为
的元组,其中
且
是
的一个开覆盖,在以下关系下构成一个有向集
,
根据上述计算,
的净值逐点收敛于
。由于来自桶形 LCTVS 到 Hausdorff TVS 的连续线性函数的逐点极限是连续且线性的,我们得出结论。