分形/复平面迭代/构造
外观
< 分形
如何构建具有所需属性的地图?
形状
- 朱利亚集
- 临界轨道
- 落在排斥循环上的外部射线(螺旋线)
形状类型和动力学之间的关系
- n-臂螺旋:吸引或排斥 n-周期轨道(循环)
- 封闭曲线:西格尔圆盘(旋转)
- n-臂星形 = 周期 n 抛物线根
通常应该控制 2 个参数
- 不动点
- 周期 p 轨道
-
朱利亚集由临界轨道建模
-
朱利亚集由临界轨道建模
-
西格尔圆盘临界轨道由周期 7 排斥轨道建模
-
西格尔圆盘临界轨道由周期 2 排斥轨道建模
-
朱利亚集由周期 6 排斥轨道及其外部射线建模
参见
-
从西格尔到抛物线星形
-
超级吸引通过吸引螺旋到抛物线星形(沿着内部射线)
- I. Scherbak 的具有指定临界点的有理函数
- 构建具有所需类型的法图分量的映射[1]
- 构建朱利亚集类似于所需形状的多项式[2]
- 构建具有吸引循环的多项式,该吸引循环访问平面上预定义的点[3]
- 构建包含任何两个二次朱利亚集副本的四次朱利亚集
- 构建具有指定组合的临界有限实多项式映射[4]
代数基本定理指出,每个非零、单变量、n 次复系数多项式都具有(按重数计)正好 n 个复根[5][6]
因式定理[7]指出,一个多项式 有一个因子 当且仅当(即 是重数为[8] m 的根)
示例
多项式[9]
多项式
有根
- 1 的重数为 2
- -4 的重数为 1
p(z) = z^4 + O(z^2),其中 p(z) 的四个根为
- 一个固定在原点,
- 其余三个形成以原点为中心并旋转的等边三角形的顶点。
创建具有所需属性的多项式
- f(z) = z*g(z) 在原点处有根
- g(z) 是 3 次单位根 =
f(z) = z(z^2+z+1)
可以使用 Maxima CAS 进行检查
(%i1) solve([z*(z^2+z+1)=0],[z]); sqrt(3) %i + 1 sqrt(3) %i - 1 (%o1) [z = - --------------, z = --------------, z = 0] 2 2 (%i2)
为了围绕原点旋转,将 1 更改为: 其中 t 是以圈数表示的真分数
二元方程组
其中
- 是一个带有一个参数 c 的有理函数
- 是 次迭代的
- 是一个循环点(极限环点)
- p 是循环的周期
- 是一个乘子[10](复数)
- 是循环的稳定性(实数)
输入
- 函数
- p(整数)
- r(实数)
- (实数或有理数)
未知数(解或输出)
- 参数 c(复数)
- 周期点 (复数)
Maxima CAS 程序
/* batch("m.mac"); */ display2d:false$ kill(all)$ ratprint:false$ /* complex quadratic polynomial */ f(z,c):= z*z+c $ /* iterated function */ F(z, c, n) := if n=1 then f(z,c) else f(F(z, c, n-1),c)$ /* multiplier = first deric=vative */ m(z,c,p):= diff(F(z,c,p),z,1)$ l(r,t) := float(rectform(r*exp(2*%pi*t*%i)))$ /* input */ p:5$ r:1.0$ t:0$ /* system of equations */ e1: F(z,c,p)=z; e2: m(z,c,p)=l(r,t); /* output = solutions = 2 complex number: c, z */ s:solve([e1,e2])$ s:map('float,s)$ s:map('rectform,s);
示例输出
对于
- p = 3
- r=1.0
- t=0.0
[ [z = 0.5,c = 0.25], [z = (-0.4330127018922193*%i)-0.25,c = (-0.6495190528383289*%i)-0.125], [z = 0.4330127018922193*%i-0.25,c = 0.6495190528383289*%i-0.125], [z = -0.05495813133539004,c = -1.75], [z = 1.301937809824245,c = -1.75], [z = -1.746979634104245,c = -1.75] ]
对于
- p = 5
- r=1.0
- t=0.0
[ [z = 0.5,c = 0.25], [z = 0.4755282581475767*%i+0.1545084971874737,c = 0.3285819450744551*%i+0.3567627457812099], [z = 0.1545084971874737-0.4755282581475767*%i, c = 0.3567627457812106-0.3285819450744586*%i], [z = 0.2938926261462365*%i-0.4045084971874737, c = 0.5316567552200239*%i-0.4817627457812153], [z = (-0.2938926261462365*%i)-0.4045084971874737, c = (-0.5316567552199369*%i)-0.481762745781224], [z = -0.003102011282477321,c = -1.985409652076318], [z = 0.0109289978340113,c = -1.860587002096436], [z = 8.008393221517376E-4*%i-0.01213161194929343, c = 1.100298437397382*%i-0.1978729466687337], [z = (-8.008393221517376E-4*%i)-0.01213161194929343, c = (-1.100298437397305*%i)-0.1978729466687667], [z = 0.02151217276434695*%i-0.005267866463337371, c = 0.3797412022535638*%i-1.256801993945385], [z = (-0.02151217276434695*%i)-0.005267866463337371, c = (-0.3797412022517599*%i)-1.256801993944077], [z = 0.02591758988716001*%i+0.0096648625988135, c = 0.9868115621249533*%i-0.04506136597934137], [z = 0.0096648625988135-0.02591758988716001*%i, c = (-0.9868115621250132*%i)-0.04506136597930513], [z = -0.02506558296814108,c = -1.624396967608546], [z = 0.02532354987824971*%i-0.0286751769590709, c = 0.6415066667139064*%i+0.3599331333357185], [z = (-0.02532354987824971*%i)-0.0286751769590709, c = 0.3599331333357186-0.6415066667139071*%i], [z = 0.7018214526647177,c = -1.860587002096436], [z = 0.5745382937725365*%i+0.1798116252110209, c = (-0.379741202251533*%i)-1.25680199394442], [z = 0.1798116252110209-0.5745382937725365*%i, c = 0.3797412022514344*%i-1.256801993944486], [z = -0.5997918293000261,c = -1.624396967608546], [z = 0.6400543521659254*%i+0.3601141169309163, c = 0.6415066667138928*%i+0.3599331333356947], [z = 0.3601141169309163-0.6400543521659254*%i, c = 0.3599331333356951-0.6415066667138929*%i], [z = 0.747361547631752*%i+0.4122389750905872, c = 0.3599331333377524-0.6415066667118048*%i], [z = 0.4122389750905872-0.747361547631752*%i,c = 0.6415066667118131*%i+0.3599331333377574], [z = -1.264646754738656,c = -1.624396967608546], [z = 0.838427461519175*%i+0.1867295812979602,c = (-0.9868115621248*%i)-0.04506136597962632], [z = 0.1867295812979602-0.838427461519175*%i, c = 0.9868115621248269*%i-0.04506136597961512], [z = 1.012227741688957,c = -1.624396967608546], [z = 0.6736931444481549*%i-0.7131540376767388, c = 0.9868115621009495*%i-0.04506136566593825], [z = (-0.6736931444481549*%i)-0.7131540376767388, c = (-0.9868115621015654*%i)-0.04506136566602404], [z = 0.6816651712455555*%i+0.8064792250322852, c = (-1.100298438532418*%i)-0.1978729463920518], [z = 0.8064792250322852-0.6816651712455555*%i,c = 1.100298438531886*%i-0.197872946387467], [z = 0.9873125420152975*%i-0.04563967787575593, c = 0.9868115621249436*%i-0.04506136597927069], [z = (-0.9873125420152975*%i)-0.04563967787575593, c = (-0.9868115621249249*%i)-0.04506136597929692], [z = -1.368033648790746,c = -1.860587002096436], [z = -1.623768668573244,c = -1.624396967608546], [z = 1.600752508361204,c = -1.860587002096436], [z = 0.8177857184842046*%i-0.8491638964763748, c = 0.6415066726649287*%i+0.3599331357137042], [z = (-0.8177857184842046*%i)-0.8491638964763748, c = 0.3599331357115682-0.6415066726792946*%i], [z = -1.860467532467532,c = -1.860586580956207], [z = 0.1585230889211015*%i+1.129895436404861, c = (-0.3797412017812437*%i)-1.256801993890818], [z = 1.129895436404861-0.1585230889211015*%i, c = 0.3797412020742688*%i-1.256801993924219], [z = 1.102491882350288*%i+0.07994573682221373, c = 0.641506666713125*%i+0.3599331333375105], [z = 0.07994573682221373-1.102491882350288*%i, c = 0.3599331333375118-0.641506666713142*%i], [z = 1.10027900645412*%i-0.1977264120044163,c = 1.100298437399976*%i-0.1978729466589521], [z = (-1.10027900645412*%i)-0.1977264120044163, c = (-1.100298437392994*%i)-0.1978729466579122], [z = 0.3795145554958574*%i-1.257237017109811, c = 0.3797412012322979*%i-1.256801993538778], [z = (-0.3795145554958574*%i)-1.257237017109811, c = (-0.3797412011893692*%i)-1.256801993401957], [z = 0.8966903093631682*%i-1.01776444141452, c = 0.986811439368143*%i-0.04506141337632084], [z = (-0.8966903093631682*%i)-1.01776444141452, c = (-0.9868114393633113*%i)-0.04506141338736716], [z = 1.407944514501891,c = -1.985409652076318], [z = 0.7215120925377011*%i+1.234881318742427, c = (-1.100298500720014*%i)-0.1978727350763138], [z = 1.234881318742427-0.7215120925377011*%i,c = 1.100298500782114*%i-0.1978727352231734], [z = 0.6651899971189704*%i-1.369391104706556, c = 1.100298438532065*%i-0.1978727774731155], [z = (-0.6651899971189704*%i)-1.369391104706556, c = (-1.100298478086625*%i)-0.1978727911942495], [z = 0.1731238730127708*%i-1.554564024233688, c = 0.3797412149717089*%i-1.256801976456581], [z = (-0.1731238730127708*%i)-1.554564024233688, c = (-0.3797411926534995*%i)-1.256801968631482], [z = 1.842105908761944,c = -1.985410334346504], [z = 1.956403762662807,c = -1.985409652076318] ]
Mandelbrot 集合 - 由 izaytsev0 绘制的海马谷中 P/Q 分支的收敛进化
- 主心形海马谷 = 头部(周期 2 区域)和主体(或肩膀 = 主心形)之间的间隙。特别是上部的一部分
- 2 个窗口
- 左:来自周期 2 区域的分支
- 右:来自周期 1 区域的分支
- 在每个窗口中,可以看到从 14/30 开始并随着 p 增加的 p/q 分支?
与 SeryZone Arts 的“真实密集分形缩放!第二部分” 进行比较
- ↑ fractalforums:julia-sets-true-shape-and-escape-time
- ↑ fractalforums : constructing-polynomials-whose-julia-set-resemble-a-desired-shape
- ↑ fractalforums : constructing-polynomials-with-attracting-cycles
- ↑ W. Thurston 算法应用于实多项式映射 Araceli Bonifant、J. Milnor、S. Sutherland 发表日期:2020 年 5 月 15 日
- ↑ 维基百科中的代数基本定理
- ↑ Ed Pegg Jr “代数基本定理” http://demonstrations.wolfram.com/TheFundamentalTheoremOfAlgebra/ Wolfram 演示项目 发表日期:2011 年 11 月 10 日
- ↑ 维基百科中的因子定理
- ↑ 维基百科上的多项式根的多重性
- ↑ fractalforums.org : julia-sets-true-shape-and-escape-time
- ↑ 维基百科上的周期点(轨道)的稳定性——乘子
- Bishop, Christopher J. 通过拟共形折叠构造整个函数. Acta Math. 214 (2015), no. 1, 1--60. doi:10.1007/s11511-015-0122-0.
- 通过拟共形手术构造具有非局部连接的Julia集的整个函数,作者:张艳华,张高飞
- Kumar, Rajen & Nayak, Tarakanta. (2020). 实非吸引不动点猜想及更进一步的研究.
- Specifying attracting cycles for Newton maps of polynomials by James T. Campbell, Jared T. Collins
- 探索Mandelbrot 集. 奥赛笔记. Adrien Douady John H. Hubbard: 构造具有给定树的多项式
- Godillon, S'ebastien. “具有规定动力学的理性映射的构造。” (2010).
- 关于构建多项式,2005年11月,数学公报 89(516),DOI: 10.2307/3621936,Christopher Sangwin