如何找到任何曼德勃罗集分量(可通过有限 次边界穿越从主心形 (M0) 访问)的根点上的外射线的角度?[ 1]
" M p / q {\displaystyle M_{p/q}} 中的 r/s 内射线是外射线 θ ± ( p / q , r / s ) {\displaystyle \theta _{\pm }(p/q,r/s)} 的着陆点,这些外射线是从 θ ± ( r / s ) {\displaystyle \theta _{\pm }(r/s)} 中得到的,方法是将
数字 0 替换为 θ − ( p / q ) {\displaystyle \theta _{-}(p/q)} 的重复块(长度为 q)
数字 1 替换为 θ + ( p / q ) {\displaystyle \theta _{+}(p/q)} 的重复块(长度为 q)"
"通过重复相同的过程(称为“调谐 ”),我们可以计算外射线的幅度,这些外射线着陆在任何可通过有限 次边界穿越从 M 0 {\displaystyle M_{0}} 访问的分量的边界上。"(Shaun Bullett)
Douady 调谐[ 2]
曼德勃罗集周期 1 大陆附近的尾迹。使用距离估计(外部和内部)呈现曼德勃罗集边界。用周期(蓝色)、内部角和射线(绿色)以及外部角和射线(红色)标记。
有角的内部地址 :
1
→
p
/
q
q
→
r
/
s
s
∗
q
{\displaystyle 1\quad {\xrightarrow {p/q}}\ q\quad {\xrightarrow {r/s}}\ s*q}
描述一种方法
从周期 1 双曲分量 c=0 的中心
沿着角度为 p/q 的内射线走向根点(p/q 键)
沿着角度为 r/s 的内射线走向 s*q 双曲分量的分量(核)的中心
其中
1、q、s 是双曲分量的周期
p/q、r/s 是内部角
有角的内部地址
1
→
1
/
2
2
→
1
/
3
3
∗
2
=
6
{\displaystyle 1\quad \xrightarrow {1/2} \ 2\quad \xrightarrow {1/3} \ 3*2=6}
首先计算p/q = 1/2 和 r/s=1/3 尾迹 的外角
θ
−
(
r
/
s
)
=
θ
−
(
1
/
3
)
=
0.
(
001
)
{\displaystyle \theta _{-}(r/s)=\theta _{-}(1/3)=0.(001)}
θ
+
(
r
/
s
)
=
θ
+
(
1
/
3
)
=
0.
(
010
)
{\displaystyle \theta _{+}(r/s)=\theta _{+}(1/3)=0.(010)}
θ
−
(
p
/
q
)
=
θ
−
(
1
/
2
)
=
0.
(
01
)
{\displaystyle \theta _{-}(p/q)=\theta _{-}(1/2)=0.({\color {Blue}01})}
θ
+
(
p
/
q
)
=
θ
+
(
1
/
2
)
=
0.
(
10
)
{\displaystyle \theta _{+}(p/q)=\theta _{+}(1/2)=0.({\color {Red}10})}
然后在 θ ( r / s ) {\displaystyle \theta (r/s)} 中替换
数字 0 为 θ − ( p / q ) {\displaystyle \theta _{-}(p/q)} 的长度为 q 的块
数字 1 为 θ + ( p / q ) {\displaystyle \theta _{+}(p/q)} 的长度为 q 的块
使用此 c 程序 ,可以得到
input string = sIn = 0.(001)
Input Length = 3
replace string for digit 0 = sR0 = 0.(01)
Length of sR0 = 2
replace string for digit 1 = sR1 = 0.(10)
Length of sR1 = 2
output string in plain form sOut = 0.(010110)
Output Length = 6
output string in wikipedia math formula form = sOutf =
0.(\ {\color{Blue}01}\ {\color{Blue}01}\ {\color{Red}10})
sR0 displayed as a blue and sR1 as a red font
input string = sIn = 0.(010)
Input Length = 3
replace string for digit 0 = sR0 = 0.(01)
Length of sR0 = 2
replace string for digit 1 = sR1 = 0.(10)
Length of sR1 = 2
output string in plain form sOut = 0.(011001)
Output Length = 6
output string in wikipedia math formula form = sOutf =
0.(\ {\color{Blue}01}\ {\color{Red}10}\ {\color{Blue}01})
sR0 displayed as a blue and sR1 as a red font
结果
θ − ( p / q , r / s ) = θ − ( 1 / 2 , 1 / 3 ) = 0. ( 01 01 10 ) {\displaystyle \theta _{-}(p/q,r/s)=\theta _{-}(1/2,1/3)=0.(\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10})}
θ + ( p / q , r / s ) = θ + ( 1 / 2 , 1 / 3 ) = 0. ( 01 10 01 ) {\displaystyle \theta _{+}(p/q,r/s)=\theta _{+}(1/2,1/3)=0.(\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01})}
使用沃尔夫·容的曼德尔程序进行检查
The angle 22/63 or p010110
has preperiod = 0 and period = 6.
The conjugate angle is 25/63 or p011001 .
The kneading sequence is ABABA* and
the internal address is 1-2-6 .
The corresponding parameter rays land
at the root of a satellite component of period 6.
root c = -1.125000000000000 +0.216506350946110 i period = 10000
It bifurcates from period 2.
Center = c = -1.138000666650965 +0.240332401262098 i period = 6
有角的内部地址
1
→
1
/
3
3
→
1
/
25
3
∗
25
=
75
{\displaystyle 1\quad {\xrightarrow {1/3}}\ 3\quad {\xrightarrow {1/25}}\ 3*25=75}
首先计算 p/q 和 r/s 尾迹 的外部角
θ
−
(
r
/
s
)
=
θ
−
(
1
/
25
)
=
0.
(
0000000000000000000000001
)
{\displaystyle \theta _{-}(r/s)=\theta _{-}(1/25)=0.(0000000000000000000000001)}
θ
+
(
r
/
s
)
=
θ
+
(
1
/
25
)
=
0.
(
0000000000000000000000010
)
{\displaystyle \theta _{+}(r/s)=\theta _{+}(1/25)=0.(0000000000000000000000010)}
θ
−
(
p
/
q
)
=
θ
−
(
1
/
3
)
=
0.
(
001
)
{\displaystyle \theta _{-}(p/q)=\theta _{-}(1/3)=0.({\color {Blue}001})}
θ
+
(
p
/
q
)
=
θ
+
(
1
/
3
)
=
0.
(
010
)
{\displaystyle \theta _{+}(p/q)=\theta _{+}(1/3)=0.({\color {Red}010})}
然后在 θ ( r / s ) {\displaystyle \theta (r/s)} 中替换
数字 0 为 θ − ( p / q ) {\displaystyle \theta _{-}(p/q)} 的长度为 q 的块
数字 1 为 θ + ( p / q ) {\displaystyle \theta _{+}(p/q)} 的长度为 q 的块
使用此 c 程序 ,可以得到
input string = sIn = 0.(0000000000000000000000001)
Input Length = 25
replace string for digit 0 = sR0 = 0.(001)
Length of sR0 = 3
replace string for digit 1 = sR1 = 0.(010)
Length of sR1 = 3
output string in plain form sOut = 0.(001001001001001001001001001001001001001001001001001001001001001001001001010)
Output Length = 75
output string in wikipedia math formula form = sOutf =
0.(\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Blue}001}\ {\color{Red}010})
所以结果是
θ
−
(
p
/
q
,
r
/
s
)
=
θ
−
(
1
/
3
,
1
/
25
)
=
0.
(
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
010
)
{\displaystyle \theta _{-}(p/q,r/s)=\theta _{-}(1/3,1/25)=0.(\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Red}010})}
θ
+
(
p
/
q
,
r
/
s
)
=
θ
+
(
1
/
3
,
1
/
25
)
=
0.
(
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
010
001
)
{\displaystyle \theta _{+}(p/q,r/s)=\theta _{+}(1/3,1/25)=0.(\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Red}010}\ {\color {Blue}001})}
使用 不能 使用
沃尔夫·容的曼德尔程序 ,因为周期 75 超过了曼德尔程序(5.14 版本)的容量
knowledgedoor 计算器 : “新数字有超过 100000 个小数位。很抱歉,我们必须中止计算以控制服务器负载” [ 3]
来自 xploringbinary 的二进制到十进制转换器,因为 : ***错误:输入中包含无效字符***[ 4]
浮点小数可以计算(xploringbinary 计算器)
0.00100100100100100100100100100100100100100100100100100100100100100100100101001001001001001001001001001001001001001001001001001001001001001001001001010010010010010010010010010010010010010010010010010010010010010010010010010100100100100100100100100100100100100100100100100100100100100100100100100101000100100100100100100100100100100100100100100100100100100100100100100100101000100100100100100100100100100100100100100100100100100100100100100100100101000100100100100100100100100100100100100100100100100100100100100100100100101 = 0.14285714285714285714288739403383051072639529883365108929843563075583153775763414823768752002069960029227911125999721923628800596414804821292109009060239475901499810101181257672784693799296426200506484998155193353019205064595746824097168836030939675768822757699065155639759014879516081816465598503673993914613650270765449619097486325642647311484333459622592887076714167693559186268814330532241007104844902043043591808926221035405535394453260989380025345642382995407618853788922160842622677279223353252746164798736572265625
注意
1/7 = 0.(001) = 0.(142857)= 0.1428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428...
所以差异在小数点后第 23 位
使用 mandelbrot-symbolics
./m-binangle-to-rational ".(001001001001001001001001001001001001001001001001001001001001001001001001010)"
5396990266136737387082/37778931862957161709567
./m-binangle-to-rational ".(001001001001001001001001001001001001001001001001001001001001001001001010001)"
5396990266136737387089/37778931862957161709567
或使用 web 界面 ,输入 : 1_1/3->3_1/25->75
有角的内部地址
1
→
1
/
3
3
→
1
/
2
6
{\displaystyle 1\quad {\xrightarrow {1/3}}\ 3\quad {\xrightarrow {1/2}}\ 6}
首先计算 p/q 和 r/s 的外部角 尾迹
θ
−
(
r
/
s
)
=
θ
−
(
1
/
2
)
=
0.
(
01
)
{\displaystyle \theta _{-}(r/s)=\theta _{-}(1/2)=0.(01)}
θ
+
(
r
/
s
)
=
θ
+
(
1
/
2
)
=
0.
(
10
)
{\displaystyle \theta _{+}(r/s)=\theta _{+}(1/2)=0.(10)}
θ
−
(
p
/
q
)
=
θ
−
(
1
/
3
)
=
0.
(
001
)
{\displaystyle \theta _{-}(p/q)=\theta _{-}(1/3)=0.({\color {Blue}001})}
θ
+
(
p
/
q
)
=
θ
+
(
1
/
3
)
=
0.
(
010
)
{\displaystyle \theta _{+}(p/q)=\theta _{+}(1/3)=0.({\color {Red}010})}
然后在 θ ( r / s ) {\displaystyle \theta (r/s)} 中替换
数字 0 为 θ − ( p / q ) {\displaystyle \theta _{-}(p/q)} 的长度为 q 的块
数字 1 为 θ + ( p / q ) {\displaystyle \theta _{+}(p/q)} 的长度为 q 的块
结果是
θ
−
(
p
/
q
,
r
/
s
)
=
θ
−
(
1
/
3
,
1
/
2
)
=
0.
(
001
010
)
{\displaystyle \theta _{-}(p/q,r/s)=\theta _{-}(1/3,1/2)=0.({\color {Blue}001}\ {\color {Red}010})}
θ
+
(
p
/
q
,
r
/
s
)
=
θ
+
(
1
/
3
,
1
/
2
)
=
0.
(
010
001
)
{\displaystyle \theta _{+}(p/q,r/s)=\theta _{+}(1/3,1/2)=0.({\color {Red}010}\ {\color {Blue}001})}
可以使用 沃尔夫·容的曼德尔程序 进行检查
The angle 10/63 or p001010
has preperiod = 0 and period = 6.
The conjugate angle is 17/63 or p010001 .
The kneading sequence is AABAA* and
the internal address is 1-3-6 .
The corresponding parameter rays are landing
at the root of a satellite component of period 6.
It is bifurcating from period 3.
Do you want to draw the rays and to shift c
to the corresponding center?
首先计算 p/q 和 r/s 的外部角 尾迹 (此处 p/q=r/s)
θ
−
(
p
/
q
)
=
θ
−
(
1
/
3
)
=
0.
(
001
)
{\displaystyle \theta _{-}(p/q)=\theta _{-}(1/3)=0.({\color {Blue}001})}
θ
+
(
p
/
q
)
=
θ
+
(
1
/
3
)
=
0.
(
010
)
{\displaystyle \theta _{+}(p/q)=\theta _{+}(1/3)=0.({\color {Red}010})}
然后在 θ ( r / s ) {\displaystyle \theta (r/s)} 中替换
数字 0 为 θ − ( p / q ) {\displaystyle \theta _{-}(p/q)} 的长度为 q 的块
数字 1 为 θ + ( p / q ) {\displaystyle \theta _{+}(p/q)} 的长度为 q 的块
结果是
θ
−
(
p
/
q
,
r
/
s
)
=
θ
−
(
1
/
3
,
1
/
2
)
=
0.
(
001
001
010
)
{\displaystyle \theta _{-}(p/q,r/s)=\theta _{-}(1/3,1/2)=0.({\color {Blue}001}\ {\color {Blue}001}\ {\color {Red}010})}
θ
+
(
p
/
q
,
r
/
s
)
=
θ
+
(
1
/
3
,
1
/
2
)
=
0.
(
001
010
001
)
{\displaystyle \theta _{+}(p/q,r/s)=\theta _{+}(1/3,1/2)=0.({\color {Blue}001}\ {\color {Red}010}\ {\color {Blue}001})}
可以使用 沃尔夫·容的曼德尔程序 进行检查
The angle 74/511 or p001001010
has preperiod = 0 and period = 9.
The conjugate angle is 81/511 or p001010001 .
The kneading sequence is AABAABAA* and
the internal address is 1-3-9 .
The corresponding parameter rays are landing
at the root of a satellite component of period 9.
It is bifurcating from period 3.
Do you want to draw the rays and to shift c
to the corresponding center?
首先计算 p/q 和 r/s 的外部角 尾迹
θ
−
(
r
/
s
)
=
θ
−
(
1
/
4
)
=
0.
(
0001
)
{\displaystyle \theta _{-}(r/s)=\theta _{-}(1/4)=0.(0001)}
θ
+
(
r
/
s
)
=
θ
+
(
1
/
4
)
=
0.
(
0010
)
{\displaystyle \theta _{+}(r/s)=\theta _{+}(1/4)=0.(0010)}
θ
−
(
p
/
q
)
=
θ
−
(
1
/
3
)
=
0.
(
001
)
{\displaystyle \theta _{-}(p/q)=\theta _{-}(1/3)=0.({\color {Blue}001})}
θ
+
(
p
/
q
)
=
θ
+
(
1
/
3
)
=
0.
(
010
)
{\displaystyle \theta _{+}(p/q)=\theta _{+}(1/3)=0.({\color {Red}010})}
然后在 θ ( r / s ) {\displaystyle \theta (r/s)} 中替换
数字 0 为 θ − ( p / q ) {\displaystyle \theta _{-}(p/q)} 的长度为 q 的块
数字 1 为 θ + ( p / q ) {\displaystyle \theta _{+}(p/q)} 的长度为 q 的块
结果是
θ
−
(
p
/
q
,
r
/
s
)
=
θ
−
(
1
/
3
,
1
/
4
)
=
0.
(
001
001
001
010
)
{\displaystyle \theta _{-}(p/q,r/s)=\theta _{-}(1/3,1/4)=0.({\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Red}010})}
θ
+
(
p
/
q
,
r
/
s
)
=
θ
+
(
1
/
3
,
1
/
4
)
=
0.
(
001
001
010
001
)
{\displaystyle \theta _{+}(p/q,r/s)=\theta _{+}(1/3,1/4)=0.({\color {Blue}001}\ {\color {Blue}001}\ {\color {Red}010}\ {\color {Blue}001})}
可以使用 沃尔夫·容的曼德尔程序 进行检查
The angle 586/4095 or p001001001010
has preperiod = 0 and period = 12.
The conjugate angle is 593/4095 or p001001010001 .
The kneading sequence is AABAABAABAA* and
the internal address is 1-3-12 .
The corresponding parameter rays are landing
at the root of a satellite component of period 12.
It is bifurcating from period 3.
Do you want to draw the rays and to shift c
to the corresponding center?
首先计算 p/q 和 r/s 的外部角 尾迹
θ
−
(
r
/
s
)
=
θ
−
(
3
/
4
)
=
0.
(
1101
)
{\displaystyle \theta _{-}(r/s)=\theta _{-}(3/4)=0.(1101)}
θ
+
(
r
/
s
)
=
θ
+
(
3
/
4
)
=
0.
(
1110
)
{\displaystyle \theta _{+}(r/s)=\theta _{+}(3/4)=0.(1110)}
θ
−
(
p
/
q
)
=
θ
−
(
1
/
3
)
=
0.
(
001
)
{\displaystyle \theta _{-}(p/q)=\theta _{-}(1/3)=0.({\color {Blue}001})}
θ
+
(
p
/
q
)
=
θ
+
(
1
/
3
)
=
0.
(
010
)
{\displaystyle \theta _{+}(p/q)=\theta _{+}(1/3)=0.({\color {Red}010})}
然后在 θ ( r / s ) {\displaystyle \theta (r/s)} 中替换
数字 0 为 θ − ( p / q ) {\displaystyle \theta _{-}(p/q)} 的长度为 q 的块
数字 1 为 θ + ( p / q ) {\displaystyle \theta _{+}(p/q)} 的长度为 q 的块
结果是
θ
−
(
p
/
q
,
r
/
s
)
=
θ
−
(
1
/
3
,
1
/
2
)
=
0.
(
010
010
001
010
)
{\displaystyle \theta _{-}(p/q,r/s)=\theta _{-}(1/3,1/2)=0.({\color {Red}010}\ {\color {Red}010}\ {\color {Blue}001}\ {\color {Red}010})}
θ
+
(
p
/
q
,
r
/
s
)
=
θ
+
(
1
/
3
,
1
/
2
)
=
0.
(
010
010
010
001
)
{\displaystyle \theta _{+}(p/q,r/s)=\theta _{+}(1/3,1/2)=0.({\color {Red}010}\ {\color {Red}010}\ {\color {Red}010}\ {\color {Blue}001})}
可以在 沃尔夫·容的曼德尔程序 中进行检查
The angle 1162/4095 or p010010001010
has preperiod = 0 and period = 12.
The conjugate angle is 1169/4095 or p010010010001 .
The kneading sequence is AABAABAABAA* and
the internal address is 1-3-12 .
The corresponding parameter rays are landing
at the root of a satellite component of period 12.
It is bifurcating from period 3.
Do you want to draw the rays and to shift c
to the corresponding center?
具有 5 条外部射线落在曼德尔布罗特集上的参数平面的部分。
有角的内部地址
1
→
1
/
3
3
→
1
/
89
3
∗
89
=
267
{\displaystyle 1\quad \xrightarrow {1/3} \ 3\quad \xrightarrow {1/89} \ 3*89=267}
输入是
(
p
/
q
,
r
/
s
)
=
(
1
/
4
,
1
/
5
)
{\displaystyle (p/q,r/s)=(1/4,1/5)}
首先计算 p/q 和 r/s 的外部角 尾迹
θ
−
(
r
/
s
)
=
θ
−
(
1
/
5
)
=
0.
(
00001
)
{\displaystyle \theta _{-}(r/s)=\theta _{-}(1/5)=0.(00001)}
θ
+
(
r
/
s
)
=
θ
+
(
1
/
5
)
=
0.
(
00010
)
{\displaystyle \theta _{+}(r/s)=\theta _{+}(1/5)=0.(00010)}
θ
−
(
p
/
q
)
=
θ
−
(
1
/
4
)
=
0.
(
0001
)
{\displaystyle \theta _{-}(p/q)=\theta _{-}(1/4)=0.({\color {Blue}0001})}
θ
+
(
p
/
q
)
=
θ
+
(
1
/
4
)
=
0.
(
0010
)
{\displaystyle \theta _{+}(p/q)=\theta _{+}(1/4)=0.({\color {Red}0010})}
然后在 θ ( r / s ) {\displaystyle \theta (r/s)} 中替换
数字 0 为 θ − ( p / q ) {\displaystyle \theta _{-}(p/q)} 的长度为 q 的块
数字 1 为 θ + ( p / q ) {\displaystyle \theta _{+}(p/q)} 的长度为 q 的块
结果是
θ
−
(
p
/
q
,
r
/
s
)
=
θ
−
(
1
/
4
,
1
/
5
)
=
0.
(
0001
0001
0001
0001
0010
)
{\displaystyle \theta _{-}(p/q,r/s)=\theta _{-}(1/4,1/5)=0.({\color {Blue}0001}\ {\color {Blue}0001}\ {\color {Blue}0001}\ {\color {Blue}0001}\ {\color {Red}0010})}
θ
+
(
p
/
q
,
r
/
s
)
=
θ
+
(
1
/
4
,
1
/
5
)
=
0.
(
0001
0001
0001
0010
0001
)
{\displaystyle \theta _{+}(p/q,r/s)=\theta _{+}(1/4,1/5)=0.({\color {Blue}0001}\ {\color {Blue}0001}\ {\color {Blue}0001}\ {\color {Red}0010}\ {\color {Blue}0001})}
可以使用 沃尔夫·容的曼德尔程序 进行检查
The angle 69906/1048575 or p00010001000100010010
has preperiod = 0 and period = 20.
The conjugate angle is 69921/1048575 or p00010001000100100001 .
The kneading sequence is AAABAAABAAABAAABAAA* and
the internal address is 1-4-20 .
The corresponding parameter rays are landing
at the root of a satellite component of period 20.
It is bifurcating from period 4.
Do you want to draw the rays and to shift c
to the corresponding center?
曼德尔布罗特集 - 尾迹 1-( 4/5)->5-(1/17)->85
角度内部地址是
1 → 4 / 5 5 → 1 / 17 5 ∗ 17 = 85 {\displaystyle 1\quad {\xrightarrow {4/5}}\ 5\quad {\xrightarrow {1/17}}\ 5*17=85}
1-(4/5)-> 5 -(1/17)-> 85
输入是
(
p
/
q
,
r
/
s
)
=
(
4
/
5
,
1
/
17
)
{\displaystyle (p/q,r/s)=(4/5,1/17)}
首先计算 p/q 和 r/s 的外部角 尾迹
θ
−
(
r
/
s
)
=
θ
−
(
1
/
17
)
=
0.
(
00000000000000001
)
{\displaystyle \theta _{-}(r/s)=\theta _{-}(1/17)=0.(00000000000000001)}
θ
+
(
r
/
s
)
=
θ
+
(
1
/
17
)
=
0.
(
00000000000000010
)
{\displaystyle \theta _{+}(r/s)=\theta _{+}(1/17)=0.(00000000000000010)}
θ
−
(
p
/
q
)
=
θ
−
(
4
/
5
)
=
0.
(
11101
)
{\displaystyle \theta _{-}(p/q)=\theta _{-}(4/5)=0.({\color {Blue}11101})}
θ
+
(
p
/
q
)
=
θ
+
(
4
/
5
)
=
0.
(
11110
)
{\displaystyle \theta _{+}(p/q)=\theta _{+}(4/5)=0.({\color {Red}11110})}
然后在 θ ( r / s ) {\displaystyle \theta (r/s)} 中替换
数字 0 为 θ − ( p / q ) {\displaystyle \theta _{-}(p/q)} 的长度为 q 的块
数字 1 为 θ + ( p / q ) {\displaystyle \theta _{+}(p/q)} 的长度为 q 的块
结果是
θ
−
(
p
/
q
,
r
/
s
)
=
θ
−
(
4
/
5
,
1
/
17
)
=
0.
(
11101
11101
11101
11101
11101
11101
11101
11101
11101
11101
11101
11101
11101
11101
11101
11101
11110
)
{\displaystyle \theta _{-}(p/q,r/s)=\theta _{-}(4/5,1/17)=0.(\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Red}11110})}
θ
+
(
p
/
q
,
r
/
s
)
=
θ
+
(
4
/
5
,
1
/
17
)
=
0.
(
11101
11101
11101
11101
11101
11101
11101
11101
11101
11101
11101
11101
11101
11101
11101
11110
11101
)
{\displaystyle \theta _{+}(p/q,r/s)=\theta _{+}(4/5,1/17)=0.(\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Blue}11101}\ {\color {Red}11110}\ {\color {Blue}11101})}
使用 沃尔夫·容的曼德尔程序 无法进行检查,因为周期过大。它只提供周期不超过 64 的答案
可以使用克劳德的 web 界面 在线进行检查
.(1110111101111011110111101111011110111101111011110111101111011110111101111011110111110)
.(1110111101111011110111101111011110111101111011110111101111011110111101111011111011101)
我们从右到左遍历角度列表
首先计算 (1/3,1/4) 尾迹 ,它将用作新的 r/s 尾迹
θ
−
(
1
/
3
,
1
/
4
)
=
0.
(
001001001010
)
=
θ
−
(
r
/
s
)
{\displaystyle \theta _{-}(1/3,1/4)=0.(001001001010)=\theta _{-}(r/s)}
θ
+
(
1
/
3
,
1
/
4
)
=
0.
(
001001010001
)
=
θ
+
(
r
/
s
)
{\displaystyle \theta _{+}(1/3,1/4)=0.(001001010001)=\theta _{+}(r/s)}
之后计算 1/2 尾迹(最左侧),它将用作 p/q 尾迹
θ
−
(
p
/
q
)
=
θ
−
(
1
/
2
)
=
0.
(
01
)
{\displaystyle \theta _{-}(p/q)=\theta _{-}(1/2)=0.({\color {Blue}01})}
θ
+
(
p
/
q
)
=
θ
+
(
1
/
2
)
=
0.
(
10
)
{\displaystyle \theta _{+}(p/q)=\theta _{+}(1/2)=0.({\color {Red}10})}
然后在 θ ( r / s ) {\displaystyle \theta (r/s)} 中替换
数字 0 由从 θ − ( p / q ) {\displaystyle \theta _{-}(p/q)}
数字 1 由从 θ + ( p / q ) {\displaystyle \theta _{+}(p/q)}
结果是
θ
−
(
1
/
2
,
1
/
3
,
1
/
4
)
=
0.
(
01
01
10
01
01
10
01
01
10
01
10
01
)
{\displaystyle \theta _{-}(1/2,1/3,1/4)=0.({\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01})}
θ
+
(
1
/
2
,
1
/
3
,
1
/
4
)
=
0.
(
01
01
10
01
01
10
01
01
10
01
01
10
)
{\displaystyle \theta _{+}(1/2,1/3,1/4)=0.({\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10})}
以纯文本格式(用于复制)
theta_minus(1/2, 1/3, 1/4) = 0.(010110010110010110011001)
theta_plus( 1/2, 1/3, 1/4) = 0.(010110010110010110010110)
可以使用 Wolf Jung 的 Mandel 程序 中的射线到点命令(Ctrl+e)来检查这种唤醒
The angle 5858713/16777215 or p010110010110010110011001
has preperiod = 0 and period = 24.
The conjugate angle is 5858902/16777215 or p010110010110011001010110 .
The kneading sequence is ABABAAABABAAABABAAABABA* and
the internal address is 1-2-6-24 .
The corresponding parameter rays are landing
at the root of a satellite component of period 24.
It is bifurcating from period 6.
Do you want to draw the rays and to shift c
to the corresponding center?
输入是一个列表
(1/3, 1/4, 1/5)
我们从右到左遍历角度列表,并将列表分成两个子列表
p
/
q
=
1
/
3
{\displaystyle p/q=1/3}
r
/
s
=
(
1
/
4
,
1
/
5
)
{\displaystyle r/s=(1/4,1/5)}
首先计算 (1/4,1/5) 唤醒 ,它将用作新的 r/s 唤醒
θ
−
(
1
/
4
,
1
/
5
)
=
0.
(
00010001000100010010
)
=
θ
−
(
r
/
s
)
{\displaystyle \theta _{-}(1/4,1/5)=0.(00010001000100010010)=\theta _{-}(r/s)}
θ
+
(
1
/
4
,
1
/
5
)
=
0.
(
00010001000100100001
)
=
θ
+
(
r
/
s
)
{\displaystyle \theta _{+}(1/4,1/5)=0.(00010001000100100001)=\theta _{+}(r/s)}
然后计算 1/3 唤醒(最左边的),它将用作 p/q 唤醒
θ
−
(
p
/
q
)
=
θ
−
(
1
/
3
)
=
0.
(
001
)
{\displaystyle \theta _{-}(p/q)=\theta _{-}(1/3)=0.({\color {Blue}001})}
θ
+
(
p
/
q
)
=
θ
+
(
1
/
3
)
=
0.
(
010
)
{\displaystyle \theta _{+}(p/q)=\theta _{+}(1/3)=0.({\color {Red}010})}
然后在 θ ( r / s ) {\displaystyle \theta (r/s)} 中替换
数字 0 由从 θ − ( p / q ) {\displaystyle \theta _{-}(p/q)}
数字 1 由从 θ + ( p / q ) {\displaystyle \theta _{+}(p/q)}
结果是
θ
−
(
1
/
3
,
1
/
4
,
1
/
5
)
=
0.
(
001
001
001
010
001
001
001
010
001
001
001
010
001
001
001
010
001
001
010
001
)
{\displaystyle \theta _{-}(1/3,1/4,1/5)=0.({\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Red}010}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Red}010}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Red}010}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Red}010}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Red}010}\ {\color {Blue}001})}
θ
+
(
1
/
3
,
1
/
4
,
1
/
5
)
=
0.
(
001
001
001
010
001
001
001
010
001
001
001
010
001
001
010
001
001
001
001
010
)
{\displaystyle \theta _{+}(1/3,1/4,1/5)=0.({\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Red}010}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Red}010}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Red}010}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Red}010}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Blue}001}\ {\color {Red}010})}
可以使用 沃尔夫·容的曼德尔程序 进行检查
The angle 164984615799661137/1152921504606846975 or p001001001010001001001010001001001010001001001010001001010001
has preperiod = 0 and period = 60.
The conjugate angle is 164984615799689802/1152921504606846975 or p001001001010001001001010001001001010001001010001001001001010 .
The kneading sequence is AABAABAABAAAAABAABAABAAAAABAABAABAAAAABAABAABAAAAABAABAABAA* and
the internal address is 1-3-12-60 .
The corresponding parameter rays are landing
at the root of a satellite component of period 60.
It is bifurcating from period 12.
Do you want to draw the rays and to shift c
to the corresponding center?
输入是一个列表
(1/2, 1/3, 1/4, 1/5)
所以内部加法器应该是
1-2-6-24-120
无法使用 Mandel 程序进行检查,因为它限制在周期 64。
我们从右到左遍历输入角度列表,并将列表分成两个子列表
p
/
q
=
1
/
2
{\displaystyle p/q=1/2}
r
/
s
=
(
1
/
3
,
1
/
4
,
1
/
5
)
{\displaystyle r/s=(1/3,1/4,1/5)}
首先计算 (1/3, 1/4, 1/5) 唤醒 ,它将用作新的 r/s 唤醒
θ
−
(
1
/
3
,
1
/
4
,
1
/
5
)
=
0.
(
001001001010001001001010001001001010001001001010001001010001
)
=
θ
−
(
r
/
s
)
{\displaystyle \theta _{-}(1/3,1/4,1/5)=0.(001001001010001001001010001001001010001001001010001001010001)=\theta _{-}(r/s)}
θ
+
(
1
/
3
,
1
/
4
,
1
/
5
)
=
0.
(
001001001010001001001010001001001010001001010001001001001010
)
=
θ
+
(
r
/
s
)
{\displaystyle \theta _{+}(1/3,1/4,1/5)=0.(001001001010001001001010001001001010001001010001001001001010)=\theta _{+}(r/s)}
然后计算 1/2 唤醒 (最左边的),它将用作 p/q 唤醒
θ
−
(
p
/
q
)
=
θ
−
(
1
/
2
)
=
0.
(
01
)
{\displaystyle \theta _{-}(p/q)=\theta _{-}(1/2)=0.({\color {Blue}01})}
θ
+
(
p
/
q
)
=
θ
+
(
1
/
2
)
=
0.
(
10
)
{\displaystyle \theta _{+}(p/q)=\theta _{+}(1/2)=0.({\color {Red}10})}
然后在 θ ( r / s ) {\displaystyle \theta (r/s)} 中替换
数字 0 由从 θ − ( p / q ) {\displaystyle \theta _{-}(p/q)}
数字 1 由从 θ + ( p / q ) {\displaystyle \theta _{+}(p/q)}
结果是(要检查! !!!!)
θ − ( 1 / 2 , 1 / 3 , 1 / 4 , 1 / 5 ) = 0. ( 01 01 10 01 01 10 01 01 10 01 10 01 01 01 10 01 01 10 01 01 10 01 10 01 01 01 10 01 01 10 01 01 10 01 10 01 01 01 10 01 01 10 01 10 01 01 01 10 ) {\displaystyle \theta _{-}(1/2,1/3,1/4,1/5)=0.({\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10})} θ + ( 1 / 2 , 1 / 3 , 1 / 4 , 1 / 5 ) = 0. ( 01 01 10 01 01 10 01 01 10 01 10 01 01 01 10 01 01 10 01 01 10 01 10 01 01 01 10 01 01 10 01 10 01 01 01 10 01 01 10 01 10 01 ) {\displaystyle \theta _{+}(1/2,1/3,1/4,1/5)=0.({\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01}\ {\color {Red}10}\ {\color {Blue}01})}
theta_minus(1/2, 1/3, 1/4, 1/5) = 0.(010110010110010110011001010110010110010110011001010110010110010110011001010110010110010110011001010110010110011001010110)
theta_plus(1/2, 1/3, 1/4, 1/5) = 0.(010110010110010110011001010110010110010110011001010110010110010110011001010110010110011001010110010110010110010110011001)
可以使用克劳德·海兰德-艾伦的book 程序 通过视觉检查。
size 640 360
view 53 -1.113644126576409e+00 2.5205986428803329e-01 3.9234950282896473e-04
ray_in 2000 .(010110010110010110011001010110010110010110011001010110010110010110011001010110010110011001010110010110010110010110011001)
ray_in 2000 .(010110010110010110011001010110010110010110011001010110010110010110011001010110010110010110011001010110010110011001010110)
text 53 -1.1152327443471231e+00 2.5276283972645397e-01 1/4
text 53 -1.1136201098499858e+00 2.5201617701965662e-01 1/5
text 53 -1.1152327443471231e+00 2.5276283972645397e-01 1/4
text 53 -1.1138472738947567e+00 2.5348331923684125e-01 24
1-(1/2)-> 2 -(1/3)-> 6 -(1/2)-> 12 -(1/3)-> 36 -(1/2)-> 72 -(2/3)-> 216 -(1/2)-> 432 -(1/3)-> 1296 -(1/2)-> 2592 -(2/3)-> 7776 -> main misiurewicz point -> right branch
尝试 mandelbrot-web[ 5]
来自克劳德的Mandelbrot-web 的信息
外部角度(抖动外部射线 )二进制 = .(00000000001111111111)
十进制有理数形式 = 1/1025
周期 = 20
揉捏 1111111111000000000★
内部地址: 1→11→12→13→14→15→16→17→18→19→20
登陆 .00000000001111111111 1/1025 .00000000010000000000 1024/1048575
有角度的内部地址
1 → 1 / 11 11 → 1 / 2 12 → 1 / 2 13 → 1 / 2 14 → 1 / 2 15 → 1 / 2 16 → 1 / 2 17 → 1 / 2 18 → 1 / 2 19 → 1 / 2 20 {\displaystyle 1\xrightarrow {1/11} 11\xrightarrow {1/2} 12\xrightarrow {1/2} 13\xrightarrow {1/2} 14\xrightarrow {1/2} 15\xrightarrow {1/2} 16\xrightarrow {1/2} 17\xrightarrow {1/2} 18\xrightarrow {1/2} 19\xrightarrow {1/2} 20}
来自 Wolf Jung 的程序 Mandel 的信息
角度 1023/1048575 或 p00000000001111111111
具有前周期 = 0 和周期 = 20。
共轭角度为 1024/1048575 或 p00000000010000000000。
揉捏序列为 AAAAAAAAAABBBBBBBBB* 且
内部地址为 1-11-12-13-14-15-16-17-18-19-20。
相应的参数射线落在周期为 20 的原始分量根部,中心为 c = 0.329617350093832 +0.042415693708911 i
/*
------------ git --------------------
https://gitlab.com/adammajewski/c-string-replaceing
cd existing_folder
git init
git remote add origin [email protected] :adammajewski/c-string-replace.git
git add .
git commit
git push -u origin master
-------------- asprintf --------------------------------------
Using asprintf instead of sprintf or snprintf by james
http://www.stev.org/post/2012/02/10/Using-saprintf-instead-of-sprintf-or-snprintf.aspx
http://ubuntuforums.org/showthread.php?t=279801
gcc c.c -D_GNU_SOURCE -Wall // without #define _GNU_SOURCE
gcc c.c -Wall
----------- run ----------------------
./a.out
*/
#define _GNU_SOURCE // asprintf
#include <stdio.h>
#include <stdlib.h>
#include <string.h> // strlen
int main () {
// output = theta+(p/q, r/s) or theta-(p/q, r/s)
char * sOut = "" ; // in plaint text format
char * sOutf = "" ; // formatted for wikipedia math formula
// input
char * sIn = "00000000000000010" ; // rs+ or rs-
// strings which will replace 0 and 1 digit in the input
// length(sR0) = length(sR1)
char * sR0 = "11101" ; // pq-
char * sR1 = "11110" ; // pq+
int iMax ; // length of the input string
int i ;
iMax = ( int ) strlen ( sIn );
for ( i = 0 ; i < iMax ; i ++ ){
// printf("i = %d, sIn[i] = %c = %d\n", i, sIn[i], sIn[i] - '0');
// create sOut by replaceing digit (0 or 1) from aIn by a block of digits : sR0 or sR1
if ((( int ) sIn [ i ] - '0' ) == 0 ) // http://stackoverflow.com/questions/868496/how-to-convert-char-to-integer-in-c
{ asprintf ( & sOut , "%s%s" , sOut , sR0 );
asprintf ( & sOutf , "%s \\ { \\ color{Blue}%s}" , sOutf , sR0 ); }
else // if sIn[i]==1
{ asprintf ( & sOut , "%s%s" , sOut , sR1 );
asprintf ( & sOutf , "%s \\ { \\ color{Red}%s}" , sOutf , sR1 );}
}
printf ( "input string = sIn = 0.(%s) \n " , sIn );
printf ( "Input Length = %d \n\n " , iMax );
printf ( "replace string for digit 0 = sR0 = 0.(%s) \n " , sR0 );
printf ( "Length of sR0 = %d \n\n " , ( int ) strlen ( sR0 ));
printf ( "replace string for digit 1 = sR1 = 0.(%s) \n " , sR1 );
printf ( "Length of sR1 = %d \n " , ( int ) strlen ( sR1 ));
printf ( "output string in plain form sOut = 0.(%s) \n " , sOut );
printf ( "Output Length = %d \n\n " , ( int ) strlen ( sOut ));
printf ( "output string in wikipedia math formula form = sOutf = \n 0.(%s) \n " , sOutf );
printf ( "sR0 displayed as a blue and sR1 as a red font \n " );
free ( sOut );
free ( sOutf );
return 0 ;
}
输出
input string = sIn = 0.(00000000000000010)
Input Length = 17
replace string for digit 0 = sR0 = 0.(11101)
Length of sR0 = 5
replace string for digit 1 = sR1 = 0.(11110)
Length of sR1 = 5
output string in plain form sOut = 0.(1110111101111011110111101111011110111101111011110111101111011110111101111011111011101)
Output Length = 85
output string in wikipedia math formula form = sOutf =
0.(\ {\color{Blue}11101}\ {\color{Blue}11101}\ {\color{Blue}11101}\ {\color{Blue}11101}\ {\color{Blue}11101}\ {\color{Blue}11101}\ {\color{Blue}11101}\ {\color{Blue}11101}\ {\color{Blue}11101}\ {\color{Blue}11101}\ {\color{Blue}11101}\ {\color{Blue}11101}\ {\color{Blue}11101}\ {\color{Blue}11101}\ {\color{Blue}11101}\ {\color{Red}11110}\ {\color{Blue}11101})
sR0 displayed as a blue and sR1 as a red font
↑ Shaun Bullett : Lectures on one-dimensional complex dynamics' (7th-10th November 2005), lecture 4, page 43, section 4.5
↑ Ordered orbits of the shift, square roots, and the devil's staircase by Shaun Bulletta and Pierrette Sentenac
↑ knowledgedoor 计算器
↑ exploring binary : 二进制转换器
↑ mandelbrot 网页