分形/复平面中的迭代/尾迹
如何找到降落在曼德勃罗集主心形(周期 1 分量)边界上 p/q 根点处的参数外部射线的角度?
- 尾迹
- 
			
			周期 1 大陆附近的尾迹
- 
			
			沿着主天线轨迹的尾迹
- 
			
			周期 10 的尾迹
- 旋转、绕数和正则星形多边形
首先检查 p/q 是不可约的
/*
https://stackoverflow.com/questions/19738919/gcd-function-for-c
The GCD function uses Euclid's Algorithm. 
It computes A mod B, then swaps A and B with an XOR swap.
*/
int gcd(int a, int b)
{
    int temp;
    while (b != 0)
    {
        temp = a % b;
        a = b;
        b = temp;
    }
    return a;
}
/*
 n/d -> n_new/d_new
 
*/
int give_reduced_fraction(const int n, const int d, int * n_new, int *d_new){
	int divisor = gcd(n,d);
	if (divisor != 1) {
		*n_new = n / divisor;
		*d_new = d / divisor;}
		
		else {
			*n_new = n;
         		*d_new = d;
		}
	return 0;
}
尾迹 是参数平面中由降落在主心形(周期 1 双曲分量)边界上的相同根点处的两条外部射线包围的区域。
p/q 肢体 是曼德勃罗集的一部分,它包含在 p/q 尾迹内
肢体
- 从根点开始
- 以顶点结束
p/q 尾迹的外部角度
- 在倍增映射下具有周期 q。它与它的降落点(c = 根点)和父双曲分量的周期相同
- 二进制展开的周期部分的长度为 q
- 倍增映射下的前周期为零
p/q 尾迹的点
- 根是具有周期性角度的参数射线的降落点
- Misiurewicz 点具有前周期外部角度
p/q 瓣的大小[1] 是 
可以通过定位天线中最小的辐条(分支)并确定其相对于主辐条的位置来识别 p/q 瓣。

来自 Wolf Jung 编写的程序 mandel 中演示 3(外部射线)第 9/12 页的笔记
角度为 1/7 和 2/7 的参数射线降落在周期 3 分量的根部,该分量是具有旋转数 1/3 的卫星型。
对于射线之间的所有参数 c 在尾迹中
- 对于曼德勃罗集的 1/3 肢体中的 c
角度为 1/7、2/7 和 4/7 的动态射线
- 一起降落在排斥不动点
- 临界值 z = c 位于前两条射线之间。
我们将计算 fc(z) 下 αc 的某些前像的外部角度。请注意,角度 θ 在倍增模 1 下有两个前像,θ/2 和 (θ+1)/2。
是 的唯一前像,不同于不动点本身。角度 1/7 的前像是 (1/7)/2 = 1/14 和 (1/7 + 1)/2 = 4/7。后一个角度属于,所以 1/14 是 的一个外部角度。以同样的方式,得到其他角度 9/14 和 11/14。射线以蓝色绘制。将 z 移动到 的前像,位于角度 2/7 和 4/7 的射线之间。角度 1/14 的前像是 (1/14)/2 = 1/28 和 (1/14 + 1)/2 = 15/28。只有后一个角度在所选区间内。z 的另外两个外部角度是 9/28 和 11/28。射线以洋红色绘制。现在 z 是位于角度 1/7 和 2/7 的射线之间的前像。通过在这个区间内取前像,得到外部角度 9/56、11/56 和 15/56。射线以红色绘制。具有前周期角度(即偶数分母)的射线降落在动力平面上具有前周期的点,或参数平面上具有 Misiurewicz 点。对于这些参数,临界值在 fc(z) 的迭代下具有前周期性。
- Mandel 程序第 4 页第 1 页的算法: 当给出中心参数 c 时,从 Hubbard 树中读出角度。- 绘制填充的 Julia 集 Kc(参数 c 是此双曲分量的中心)
- 定位 (角度 0 和 1/2 落在不动点 及其原像 )并
- 找到通往 5 周期点的两个通路
- 跟踪这些通路,并根据 Julia 集的上下侧记录数字 0 或 1。 这两条射线之间的上部动态射线具有 0 到 1/2 之间的角度,第一个二进制位是 0。 下部的角度在 1/2 到 1 之间,第一个位是 1。
- 你可能需要仔细放大子集。 或者使用反向蜘蛛算法。
 
- 来自 Mandel 程序尾迹的角度 - 代码
- 组合算法 = Devaney 方法
动态平面的分区:[2]
Devaney 方法[3] 用于查找主芽的外部角度[4][5]
步骤
- 从 有理数 旋转角度开始,
- 旋转角度在圆映射下的轨道
- 将轨道转换为行程
- 将 行程 转换为具有重复二进制小数的二进制展开式
- 将二进制展开式转换为二进制小数
- 转换为十进制小数
输入: 有理数旋转角度
输出: 外部角度(十进制或二进制小数)
以下是来自 Wolf Jung 的 Mandel 程序 的 C++ 代码
// mndcombi.cpp  by Wolf Jung (C) 2007-2015, part of Mandel 5.13, 
qulonglong mndAngle::wake(int k, int r, qulonglong &n)
{  if (k <= 0 || k >= r || r > 64) return 0LL;
   qulonglong d = 1LL; 
   int j, s = 0; 
   n = 1LL;
   for (j = 1; j < r; j++)
   {  s -= k; if (s < 0) s += r; if (!s) return 0LL;
      if (s > r - k) n += d << j;
   }
   //
   d <<= (r - 1); d--; d <<= 1; d++; //2^r - 1 for r <= 64
   return d;
}
/*
------- Git -----------------
cd existing_folder
git init
git remote add origin git@gitlab.com:adammajewski/wake_gmp.git
git add .
git commit -m ""
git push -u origin master
-------------------------------
?? http://stackoverflow.com/questions/2380415/how-to-cut-a-mpz-t-into-two-parts-using-gmp-lib-on-c
   
   to compile from console:
   gcc w.c -lgmp -lmpfr -Wall
    to run from console :
   ./a.out
   tested on Ubuntu 14.04 LTS
uiIADenominator = 89 
Using MPFR-3.1.2-p3 with GMP-5.1.3 with precision = 200 bits 
internal angle = 34/89
first external angle : 
period = denominator of internal angle = 89
external angle as a decimal fraction = 179622968672387565806504265/618970019642690137449562111 = 179622968672387565806504265 /( 2^89 - 1) 
External Angle as a floating point decimal number =  2.9019655713870868535821260055542440298749779423213948304299730531995503353103626302473331181359966368582651105245850405837027542373052381532777325121338632071561064451614697645709384232759475708007812e-1
external angle as a binary rational (string) : 1001010010010100101001001010010010100101001001010010100100101001001010010100100101001001/11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 
external angle as a binary floating number in exponential form =0.10010100100101001010010010100100101001010010010100101001001010010010100101001001010010010100101001001010010100100101001001010010100100101001010010010100100101001010010010100100101001010010010100101001*2^-1
external angle as a binary floating number in periodic form =0.(01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001)
                                                             .(01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001)
*/
#include <stdlib.h> // malloc
#include <stdio.h>
#include <gmp.h>  // for rational numbers 
#include <mpfr.h> // for floating point mumbers
 // rotation map 
//the number  n  is always increased by n0 modulo d
// input :  op = n/d ( rational number ) and n0 ( integer)
//  n = (n + n0 ) % d
// d = d
// output = rop = n/d
void mpq_rotation(mpq_t rop, const mpq_t op, const mpz_t n0)
{
  
  mpz_t n; // numerator
  mpz_t d; // denominator
  mpz_inits( n, d, NULL);
 
  //  
  mpq_get_num (n, op); // 
  mpq_get_den (d, op);
  
 
  // n = (n + n0 ) % d
  mpz_add(n, n, n0); 
  mpz_mod( n, n, d);
  
      
  // output
  mpq_set_num(rop, n);
  mpq_set_den(rop, d);
    
  mpz_clears( n, d, NULL);
}
void mpq_wake(mpq_t rop, mpq_t op)
{
   
  // arbitrary precision variables from GMP library
   mpz_t  n0 ; // numerator of q
   mpz_t  nc;
   mpz_t  n;
   mpz_t  d ; // denominator of q
   mpz_t  m; // 2^i
   mpz_t  num ; // numerator of rop
   mpz_t  den ; // denominator of rop
   long long int i;
   unsigned long int base = 2;
   unsigned long int id;
   int cmp;
   mpz_inits(n, n0,nc,d,num,den,m, NULL);
   mpq_get_num(n0,op);
   mpq_get_den(d,op);
   id = mpz_get_ui(d);
   //  if (n <= 0 || n >= d ) error !!!! bad input
   mpz_sub(nc, d, n0); // nc = d - n0
   mpz_set(n, n0);   
   mpz_set_ui(num, 0);
   // rop  
    // num = numerator(rop)
    
   
   // denominator = den(rop) = (2^i) -1 
   mpz_ui_pow_ui(den, base, id) ;  // den = base^id
   mpz_sub_ui(den, den, 1);   // den = den-1
   
  // numerator   
     for (i=0; i<id ; i++){  
       
       mpz_set_ui(m, 0);
       cmp = mpz_cmp(n,nc);// Compare op1 and op2. Return a positive value if op1 > op2, zero if op1 = op2, or a negative value if op1 < op2.
       if ( cmp>0 ) {
          mpz_ui_pow_ui(m, 2, id-i-1); // m = 2^(id-i   )
          mpz_add(num, num, m); // num = num + m
          if (mpz_cmp(num, den) >0) mpz_mod( num, num, den); // num = num % d ; if num==d gives 0
          //gmp_printf("s = 1");
           }
        // else gmp_printf("s = 0");
       //gmp_printf (" i = %ld internal angle = %Zd / %Zd ea = %Zd / %Zd ; m = %Zd \n", i, n, d, num, den, m);
        // n = (n + n0 ) % d = rotation 
       mpz_add(n, n, n0); 
       if (mpz_cmp(n, d)>0) mpz_mod( n, n, d);
       //
       
          
        // 
      }
    
   // rop = external angle 
   mpq_set_num(rop,num);
   mpq_set_den(rop,den);
   mpq_canonicalize (rop); // It is the responsibility of the user to canonicalize the assigned variable before any arithmetic operations are performed on that variable.
    
   // clear memory
   mpz_clears(n, n0, nc, d, num,den, m, NULL);
}
/*
http://stackoverflow.com/questions/9895216/remove-character-from-string-in-c
"The idea is to keep a separate read and write pointers (pr for reading and pw for writing), 
always advance the reading pointer, and advance the writing pointer only when it's not pointing to a given character."
modified
 remove first length2rmv chars and after that take only length2stay chars from input string
 output = input string 
*/
void extract_str(char* str, unsigned int length2rmv, unsigned long int length2stay) {
    // separate read and write pointers 
    char *pr = str; // read pointer
    char *pw = str; // write pointer
    int i =0; // index
    while (*pr) {
        if (i>length2rmv-1 && i <length2rmv+length2stay)
          pw += 1; // advance the writing pointer only when 
        pr += 1;  // always advance the reading pointer
        *pw = *pr;    
        i +=1;
    }
    *pw = '\0';
}
int main ()
{	
	
         // notation : 
        //number type : s = string ; q = rational ; z = integer, f = floating point
        // base : b = binary ; d = decimal
        
        char *sqdInternalAngle = "13/34";
        mpq_t qdInternalAngle;   // internal angle = rational number q = n/d
        mpz_t den;  
        unsigned long int uiIADenominator;
        
       
        mpq_t  qdExternalAngle;   // rational number q = n/d
        char  *sqbExternalAngle;
        mpfr_t  fdExternalAngle ;  // 
        char  *sfbExternalAngle; // 
        
        mp_exp_t exponent ; // holds the exponent for the result string
        mpz_t zdEANumerator;
        mpz_t zdEADenominator;
        mpfr_t EANumerator;
        mpfr_t EADenominator;
        mpfr_prec_t p = 200; // in bits , should be > denominator of internal angle
         mpfr_set_default_prec (p); // but previously initialized variables are unaffected.
        //mpfr_set_default_prec (precision);
        // init variables 
        //mpf_init(fdExternalAngle);
        mpz_inits(den, zdEANumerator,zdEADenominator, NULL);
        mpq_inits (qdExternalAngle, qdInternalAngle, NULL); //
        mpfr_inits(fdExternalAngle, EANumerator, EADenominator, NULL);
        // set variables
        mpq_set_str(qdInternalAngle, sqdInternalAngle, 10); // string is an internal angle
        mpq_canonicalize (qdInternalAngle); // It is the responsibility of the user to canonicalize the assigned variable before any arithmetic operations are performed on that variable.
        mpq_get_den(den,qdInternalAngle); 
        uiIADenominator = mpz_get_ui(den);
        printf("uiIADenominator = %lu \n", uiIADenominator);
        if ( p < uiIADenominator) printf("increase precision !!!!\n");         
        mpfr_printf("Using MPFR-%s with GMP-%s with precision = %u bits \n", mpfr_version, gmp_version, (unsigned int) p);
        //        
        mpq_wake(qdExternalAngle, qdInternalAngle); // internal -> external
        mpq_get_num(zdEANumerator  ,qdExternalAngle);
        mpq_get_den(zdEADenominator,qdExternalAngle); 
        // conversions
        mpfr_set_z (EANumerator,   zdEANumerator,   GMP_RNDN);
        mpfr_set_z (EADenominator, zdEADenominator, GMP_RNDN);
        sqbExternalAngle = mpq_get_str (NULL, 2, qdExternalAngle); // rational number = fraction : from decimal to binary
        
        mpfr_div (fdExternalAngle, EANumerator, EADenominator, GMP_RNDN);
        sfbExternalAngle = (char*)malloc((sizeof(char) * uiIADenominator*2*4) + 3);
        // mpfr_get_str (char *str, mpfr_exp_t *expptr, int b, size_t n, mpfr_t op, mpfr_rnd_t rnd)
        if (sfbExternalAngle==NULL ) {printf("sfbExternalAngle error \n"); return 1;}
        mpfr_get_str(sfbExternalAngle, &exponent, 2,200, fdExternalAngle, GMP_RNDN);
        // print
        gmp_printf ("internal angle = %Qd\n", qdInternalAngle); // 
        printf("first external angle : \n");
        gmp_printf ("period = denominator of internal angle = %Zd\n", den); //
        gmp_printf ("external angle as a decimal fraction = %Qd = %Zd /( 2^%Zd - 1) \n", qdExternalAngle, zdEANumerator, den); // 
        printf ("External Angle as a floating point decimal number =  ");
        mpfr_out_str (stdout, 10, p, fdExternalAngle, MPFR_RNDD); putchar ('\n');
        gmp_printf ("external angle as a binary rational (string) : %s \n", sqbExternalAngle); // 
        
        printf ("external angle as a binary floating number in exponential form =0.%s*%d^%ld\n", sfbExternalAngle, 2, exponent); 
        extract_str(sfbExternalAngle,  uiIADenominator+exponent, uiIADenominator); 
        printf ("external angle as a binary floating number in periodic form =0.(%s)\n", sfbExternalAngle);
        // clear memory
        //mpf_clear(fdExternalAngle);
        mpq_clears(qdExternalAngle, qdInternalAngle, NULL);
        mpz_clears(den, zdEANumerator, zdEADenominator, NULL);
        mpfr_clears(fdExternalAngle, EANumerator, EADenominator, NULL);
        free(sfbExternalAngle);
        return 0;
}
Claude Heiland-Allen 的代码和描述[6]
主球 周期为  的心形的子球在内部角度  处具有外部角度
其中
import Data.Fixed (mod')
import Data.List (genericTake)
import Data.Ratio (denominator)
type InternalAngle = Rational
type ExternalAngle = ([Bool], [Bool])
primaryBulb
  :: InternalAngle
  -> (ExternalAngle, ExternalAngle)
primaryBulb pq
  = ( ([], bs ++ [False, True])
    , ([], bs ++ [True, False])
    )
  where
    q = denominator pq
    bs
      = genericTake (q - 2)
      . map (\x -> 1 - pq < x && x < 1)
      . iterate (\x -> (x + pq) `mod'` 1)
      $ pq
可以使用以下方法检查结果

主心形区域的 1/2 醒点由角度为以下值的参数射线界定
- 1/3 = p01 = 0.(01)
- 2/3 = p10 = 0.(10)
The 1/2-wake of the main cardioid is bounded by the parameter rays with the angles 1/3 or p01 and 2/3 or p10 . The angle 1/3 or p01 has preperiod = 0 and period = 2. The conjugate angle is 2/3 or p10 . The kneading sequence is A* and the internal address is 1-2 . The corresponding parameter rays land at the root of a satellite component of period 2. It bifurcates from period 1.
重要点
- 周期 1 和 2 之间的根点 = c = -0.75 = -3/4 = 内部角度 1/2 的分叉点。2 个外部射线 1/3 和 2/3 的着陆点
- 周期 2 分量的中心 c = -1
- 主天线的顶点 c = -2 = . 它是角度为 的外部射线的着陆点
有理角度 3/7 的轨道(以及在子区间的定位)
1 / 3 = 0 2 / 3 = 0 0 / 3 = 1
因此行程 = 001
first external angle = 001 = 1 / 7
主心形区域的 1/3 醒点由角度为以下值的参数射线界定
- 1/7 = p001 = 0.(001)
- 2/7 = p010 = 0.(010)
注意
- 1/7 = 0.(142857)= 0.1428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428...
但小数展开在这里并不重要。只有小数比率和二进制浮点数很重要
主心形区域的 1/4 醒点由角度为以下值的参数射线界定
- 1/15 或 p0001 或
- 2/15 或 p0010 或
有 4 个周期为 5 的醒点
- 1/5
- 2/5
- 3/5
- 4/5
主心形区域的 1/5 醒点由角度为以下值的参数射线界定
- 1/31 = p00001 = 0.(00001)
- 2/31 = p00010 = 0.(00010)
主心形区域的 4/5 醒点由角度为以下值的参数射线界定
- 29/31 = p11101 = 0.(11101)
- 30/31 = p11110 = 0.(11110)



将区间(圆)
分为 2 个子区间(下部分区)
有理角度 3/7 的轨道(以及在子区间的定位)
3 / 7 = 0 6 / 7 = 1 2 / 7 = 0 5 / 7 = 1 1 / 7 = 0 4 / 7 = 0 0 / 7 = 1
因此,行程 是
 
可以将其转换为数字
主心形区域的 3/7 醒点由角度为以下值的参数射线界定
- 41/127 = p0101001 = 0.(0101001)
- 42/127 = p0101010 = 0.(0101010)
根点
c = -0.606356884415893 +0.412399740175787 i
使用 此程序(指数 = 7,mpz_init_set_ui(n, 41)) 计算 41/127 在模 1 倍增映射下的轨道
41/127 82/127 37/127 74/127 21/127 42/127 84/127

ghci
GHCi, version 8.10.7: https://www.haskell.org/ghc/  :? for help
Prelude> :l bh.hs
[1 of 1] Compiling Main             ( bh.hs, interpreted )
Ok, one module loaded.
*Main> :main 5 11
internal angle p/q = 5 / 11
internal angle in lowest terms = 
5 % 11
rays of the bulb:
(01010101001) = 681 % 2047
(01010101010) = 682 % 2047
主心形区域的 5/11 醒点由角度为以下值的参数射线界定
- 681/2047 = p01010101001 = 0.(01010101001)
- 682/2047 = p01010101010 = 0.(01010101010)
周期 11 的中心:c = -0.697838195122425 +0.279304134101366 i 根点(键):c = -0.690059870015044 +0.276026482784614 i
角度内部地址:
主心形区域的 1/17 醒点由角度为以下值的参数射线界定
- 1/131071 = p00000000000000001 = 0.(00000000000000001)
- 2/131071 = p00000000000000010 = .(00000000000000010)
参数平面
- 根点 c = -0.733308614559099 +0.148209926690813 i
- 主心形区域的 10/21 醒点由角度为以下值的参数射线界定- 699049/2097151 或 p010101010101010101001
- 699050/2097151 或 p010101010101010101010
 
动力学平面
- 醒点的外部射线不界定临界扇区- 699049/2097151 或 p010101010101010101001
- 699050/2097151 或 p010101010101010101010
 
- alpha 固定点(周期 1)z = -0.494415413112564 +0.074521133088087i
uiIADenominator = 25 Using MPFR-3.1.5 with GMP-6.1.1 with precision = 200 bits internal angle = 1/25 first external angle : period = denominator of internal angle = 25 external angle as a decimal fraction = 1/33554431 = 1 /( 2^25 - 1) External Angle as a floating point decimal number = 2.9802323275873758669905622896719661257256902970579355078320375103410059138021557873907862143745145987726127630324761942815747600646073471636075786857847163330961076713939572483194617724677755177253857e-8 external angle as a binary rational (string) : 1/1111111111111111111111111 external angle as a binary floating number in exponential form =0.10000000000000000000000001000000000000000000000000100000000000000000000000010000000000000000000000001000000000000000000000000100000000000000000000000010000000000000000000000001000000000000000000000001*2^-24 external angle as a binary floating number in periodic form =0.(0000000000000000000000001)
因此,主心形区域的 1/25 醒点由角度为以下值的参数射线界定
- 0.0000000298 = 1/33554431 = 1 /( 2^25 - 1) = 0.(0000000000000000000000001)
- 0,0000000596 = 2/33554431 = 2 /( 2^25 - 1) = 0.(0000000000000000000000010)
可以使用 Mandel 进行检查
The angle 1/33554431 or p0000000000000000000000001 has preperiod = 0 and period = 25. The conjugate angle is 2/33554431 or p0000000000000000000000010 . The kneading sequence is AAAAAAAAAAAAAAAAAAAAAAAA* and the internal address is 1-25 . The corresponding parameter rays are landing at the root of a satellite component of period 25. It is bifurcating from period 1. Do you want to draw the rays and to shift c to the corresponding center?
中心是
c = 0.265278321904606 +0.003712059989878 i period = 25
醒点 12/25
- 根点 c = -0.738203140939397 +0.124839088573366 i
- 主心形区域的 12/25 醒点由角度为以下值的参数射线界定- 11184809/33554431 或 p0101010101010101010101001 且
- 11184810/33554431 或 p0101010101010101010101010 。
 
- 卫星组件 c 的中心为 -0.739829393511579 +0.125072144080321 i 周期为 25

主心形区的 1/31 尾流
- 由参数射线界定,参数射线的角度为- 1/2147483647 = p0000000000000000000000000000001 = 0.(0000000000000000000000000000001)
- 2/2147483647 = p0000000000000000000000000000010 = 0.(0000000000000000000000000000010)
 
- 根点:c = 0.260025517721190 +0.002060296266000 i
- 中心 c = 0.260025517721190 +0.002060296266000 i
- 主要 Misiurewicz 点 c = 0.259995759918769 +0.001610271381965*i- 具有前周期 = 31,周期 = 1
- 是 31 条外部射线的着陆点- 2147483649/4611686016279904256 = 0000000000000000000000000000001p0000000000000000000000000000010 = .0000000000000000000000000000001(0000000000000000000000000000010)
 
 
- 最大的婴儿 Mandelbrot 集具有 kneading 序列 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB*,对应于内部地址 1-31-32。周期为 32。最小的角度为 3/4294967295 = 0.(00000000000000000000000000000011) 和 4/4294967295 = 0.(00000000000000000000000000000100)
在动力学平面
- 角度

主心形区的 13/34 尾流由参数射线界定,参数射线的角度为
- 4985538889/17179869183 = p0100101001001010010100100101001001 = 0.(0100101001001010010100100101001001)
- 4985538890/17179869183 = p0100101001001010010100100101001010 = 0.(0100101001001010010100100101001010)
s = 0 i = 0 internal angle = 13 / 34 ea = 0 / 17179869183 ; m = 0 s = 1 i = 1 internal angle = 26 / 34 ea = 4294967296 / 17179869183 ; m = 4294967296 s = 0 i = 2 internal angle = 5 / 34 ea = 4294967296 / 17179869183 ; m = 0 s = 0 i = 3 internal angle = 18 / 34 ea = 4294967296 / 17179869183 ; m = 0 s = 1 i = 4 internal angle = 31 / 34 ea = 4831838208 / 17179869183 ; m = 536870912 s = 0 i = 5 internal angle = 10 / 34 ea = 4831838208 / 17179869183 ; m = 0 s = 1 i = 6 internal angle = 23 / 34 ea = 4966055936 / 17179869183 ; m = 134217728 s = 0 i = 7 internal angle = 2 / 34 ea = 4966055936 / 17179869183 ; m = 0 s = 0 i = 8 internal angle = 15 / 34 ea = 4966055936 / 17179869183 ; m = 0 s = 1 i = 9 internal angle = 28 / 34 ea = 4982833152 / 17179869183 ; m = 16777216 s = 0 i = 10 internal angle = 7 / 34 ea = 4982833152 / 17179869183 ; m = 0 s = 0 i = 11 internal angle = 20 / 34 ea = 4982833152 / 17179869183 ; m = 0 s = 1 i = 12 internal angle = 33 / 34 ea = 4984930304 / 17179869183 ; m = 2097152 s = 0 i = 13 internal angle = 12 / 34 ea = 4984930304 / 17179869183 ; m = 0 s = 1 i = 14 internal angle = 25 / 34 ea = 4985454592 / 17179869183 ; m = 524288 s = 0 i = 15 internal angle = 4 / 34 ea = 4985454592 / 17179869183 ; m = 0 s = 0 i = 16 internal angle = 17 / 34 ea = 4985454592 / 17179869183 ; m = 0 s = 1 i = 17 internal angle = 30 / 34 ea = 4985520128 / 17179869183 ; m = 65536 s = 0 i = 18 internal angle = 9 / 34 ea = 4985520128 / 17179869183 ; m = 0 s = 1 i = 19 internal angle = 22 / 34 ea = 4985536512 / 17179869183 ; m = 16384 s = 0 i = 20 internal angle = 1 / 34 ea = 4985536512 / 17179869183 ; m = 0 s = 0 i = 21 internal angle = 14 / 34 ea = 4985536512 / 17179869183 ; m = 0 s = 1 i = 22 internal angle = 27 / 34 ea = 4985538560 / 17179869183 ; m = 2048 s = 0 i = 23 internal angle = 6 / 34 ea = 4985538560 / 17179869183 ; m = 0 s = 0 i = 24 internal angle = 19 / 34 ea = 4985538560 / 17179869183 ; m = 0 s = 1 i = 25 internal angle = 32 / 34 ea = 4985538816 / 17179869183 ; m = 256 s = 0 i = 26 internal angle = 11 / 34 ea = 4985538816 / 17179869183 ; m = 0 s = 1 i = 27 internal angle = 24 / 34 ea = 4985538880 / 17179869183 ; m = 64 s = 0 i = 28 internal angle = 3 / 34 ea = 4985538880 / 17179869183 ; m = 0 s = 0 i = 29 internal angle = 16 / 34 ea = 4985538880 / 17179869183 ; m = 0 s = 1 i = 30 internal angle = 29 / 34 ea = 4985538888 / 17179869183 ; m = 8 s = 0 i = 31 internal angle = 8 / 34 ea = 4985538888 / 17179869183 ; m = 0 s = 0 i = 32 internal angle = 21 / 34 ea = 4985538888 / 17179869183 ; m = 0 s = 1 i = 33 internal angle = 34 / 34 ea = 4985538889 / 17179869183 ; m = 1 internal angle = 13/34 period = denominator of internal angle = 34 external angle as a decimal fraction = 4985538889/17179869183 = 4985538889 /( 2^34 - 1) external angle as a binary rational (string) : 100101001001010010100100101001001/1111111111111111111111111111111111 external angle as a binary floating number in exponential form =0.1001010010010100101001001010010010100101001001010010100100101001*2^-1 external angle as a binary floating number in periodic form =0.(0100101001001010010100100101001)
Using GMP-5.1.3 with precision = 256 bits internal angle = 34/89 period = denominator of internal angle = 89 external angle as a decimal fraction = 179622968672387565806504265/618970019642690137449562111 external angle as a binary rational (string) : 1001010010010100101001001010010010100101001001010010100100101001001010010100100101001001/11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 external angle as a binary floating number in exponential form =0.10010100100101001010010010100100101001010010010100101001001010010010100101001001010010010100101001001010010100100101001001010010100100101001010010010100100101001010010010100100101001010010010100101001001010010010100101001001010010100100101001001010010100101*2^-1 external angle as a binary floating number in periodic form =0.(01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001)
uiIADenominator = 128 Using MPFR-4.0.2 with GMP-6.2.0 with precision = 200 bits internal angle = 1/128 first external angle : period = denominator of internal angle = 128 external angle as a decimal fraction = 1/340282366920938463463374607431768211455 = 1 /( 2^128 - 1) External Angle as a floating point decimal number = 2.9387358770557187699218413430556141945553000604853132483972656175588435482079339324933425313850237034701685918031624270579715075034722882265605472939461496635969950989468319466936530037770580747746862e-39 external angle as a binary rational (string) : 1/11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 external angle as a binary floating number in exponential form =0.10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000*2^-127 external angle as a binary floating number in periodic form =0.(00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001)

Using GMP-5.1.3 with precision = 320 bits internal angle = 89/268 period = denominator of internal angle = 268 external angle as a decimal fraction = 67754913930863876636420964942226524366713408170066250043659752013773168429311121/474284397516047136454946754595585670566993857190463750305618264096412179005177855 external angle as a binary rational (string) : 0010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010001 /1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 external angle as a binary floating number in exponential form =0.10010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010001 001001001001001001001001001001001001001001001001001001*2^-2 external angle as a binary floating number in periodic form = 0.(0010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010001)
G Pastor 给出了一个 IEEE 754 分辨率不足以表示的外部射线示例 [7]
- ↑ Mandelbrot 集和 Farey 树。美国数学月刊 106 (1999), 289-302。
- ↑ Mandelbrot 集的有理参数射线,作者 Dierk Schleicher
- ↑ Mandelbrot 集和 Farey 树,作者 Robert L. Devaney
- ↑ Mandelbrot 集中的外部角度:Douady 和 Hubbard 的工作,作者 Douglas C. Ravenel
- ↑ 复数和 Mandelbrot 集,作者 Dusa McDuff 和 Melkana Brakalova
- ↑ m-primary-bulb,作者 Claude Heiland-Allen
- ↑ 绘制 Mandelbrot 集外部射线局限性的解决方法,M. Romera,1 G. Pastor, A. B. Orue,1 A. Martin, M.-F. Danca,和 F. Montoya






