分形/数学/群/巴塞利卡群
外观
巴塞利卡群是 :[1]
多项式 的临界点是 和 。
后临界集是
由 GAP CAS 的 FR 包预定义。这里 BinaryKneadingGroup("1") 是 BasilicaGroup。
gap> BinaryKneadingGroup(1/3)=BasilicaGroup; true
或
gap> B := FRGroup("a=<1,b>(1,2)","b=<1,a>",IsFRMealyElement); <state-closed group over [ 1, 2 ] with 2 generators> gap> AssignGeneratorVariables(B); #I Assigned the global variables [ "a", "b" ] gap> B=BasilicaGroup; #I \=: converting second argument to FR element #I \<: converting second argument to FR element #I \<: converting second argument to FR element #I \=: converting second argument to FR element #I \=: converting second argument to FR element #I \<: converting second argument to FR element #I \<: converting second argument to FR element #I \=: converting second argument to FR element #I \=: converting first argument to FR element #I \=: converting first argument to FR element #I \=: converting first argument to FR element #I \=: converting first argument to FR element #I \=: converting first argument to FR element #I \=: converting first argument to FR element #I \=: converting first argument to FR element #I \=: converting first argument to FR element true
gap> Size(BasilicaGroup); infinity gap> GeneratorsOfGroup(BasilicaGroup); [ a, b ] gap> Alphabet(BasilicaGroup); [ 1, 2 ] gap> KnownAttributesOfObject(BasilicaGroup); [ "Name", "Representative", "OneImmutable", "GeneratorsOfMagma", "GeneratorsOfMagmaWithInverses", "MultiplicativeNeutralElement", "UnderlyingFRMachine", "Correspondence", "AlphabetOfFRSemigroup", "NucleusOfFRSemigroup", "FRGroupPreImageData", "KneadingSequence", "Alphabet" ] gap> KnownPropertiesOfObject(BasilicaGroup); [ "IsDuplicateFree", "IsAssociative", "IsSimpleSemigroup", "IsFinitelyGeneratedGroup", "IsStateClosed", "IsBoundedFRSemigroup", "IsAmenableGroup" ] gap> KneadingSequence(BasilicaGroup); [/ '1', '*' ]
- ↑ 詹姆斯·贝尔克、布拉德利·福雷斯特的巴塞利卡汤普森群
- ↑ R. I. Grigorchuk 和 A. Zuk (2002a)。关于由三态自动机定义的无扭弱分支群。代数与计算国际杂志,12(1-2):223–246。几何与组合方法在群论与半群论中的国际会议 (林肯,内布拉斯加州,2000 年)。
- ↑ 通过随机游走实现可交换性 洛朗·巴特霍尔迪和巴林特·维拉格 2003 年 5 月 19 日