定义(拓扑空间):
**拓扑空间** 是一个集合
以及关于它的一个拓扑
。
定义(闭开集):
设
是一个拓扑空间。一个子集
称为闭开集,当且仅当它同时是开集和闭集。
证明: 我们声称,在满足命题中 1.-3. 的集合
(称此集合为
)与
上的拓扑之间存在一个双射,我们将用
表示,因此如果这个双射表示为
,那么拓扑
的闭集由
精确给出。实际上,这个映射
由
给出,其逆为
.
这些通过直接计算互为逆,并且
的闭集恰好是
。我们必须证明
是定义良好的,也就是说,它将
映射到
,并且逆映射也是定义良好的,因为它将
映射到
。首先令
为拓扑。由于
并且
,上述条件 1 被满足。现在假设
,因此对于
,我们有
,对于某个
。由于
是拓扑,
,此外,根据德摩根定律
.
最后,假设
是
中元素的一个族,并且对于
再次写出
。由于
是一个拓扑,
,并且根据德摩根定律
,
和
满足 1. - 3. 反方向可以通过类似的计算来证明。因此,唯一一个闭集为
的拓扑是
,如果
是一个拓扑,
,其闭集,满足 1.-3. 
证明:这是一种特殊情况,因为幂集的子集按包含排序。 
命题(拓扑的交集是一个拓扑):
令
为集合
上的一族拓扑。那么

是
上的拓扑。
证明:这从交集保留封闭性质得出,注意到有限交集和任意并集是
上的运算(以及整体和空集,即 0 阶运算),并且每个拓扑都对这些运算封闭。 
Proof: Let's first show that whenever the sets
are the neighbourhoods of a topology
on
, then they satisfy 1. - 4. Indeed,
is an (open) neighbourhood of every of its points. Then, whenever
for some
, we find open sets
such that
and
, note that
and that
is open, as finite intersections of open sets are open. If
,
open and
arbitrary, then
so that
. Finally, if
, choose an open
s.t.
, then
is open, hence a neighbourhood of all of its points. Now suppose that for each
we are given
and these neighbourhoods satisfy the conditions 1.-4. Then we define

and claim that
is a topology. Indeed,
, since then the condition is trivially satisfied, since there are no
. Furthermore,
, since whenever
,
and
is a neighbourhood of
. Then, suppose that
is a family of sets contained in
, and set
. We claim that
. Indeed, if
, pick
so that
, then
such that
since
, and finally note that
. Then, let
and pick
so that
and
. Then
, so that
, since
.
Now we claim that for each
, the neighbourhoods of
with respect to
are precisely
. Indeed, let first a neighbourhood
of
be given. Choose
open. Then by definition of
, there exists
such that
, and since
is closed under supersets,
. Conversely, suppose
. Define
, and claim that
and
is open in
. Indeed,
is clear, since
is necessary for
being a neighbourhood of
. Let now
. By 4., choose
so that
and
is in
for all
. Thus
for all
, so that
, and since
was arbitrary,
is open, and
is a neighbourhood in
of
.
最后,设
为任何以
作为邻域的拓扑,并断言
如上定义。事实上,如果
,则
本身就是其每个点的邻域,因此在
中。反之,如果
,则对于每个
,选择
的一个邻域
包含在
中(为了避免选择公理,选择它们是所有此类集合的并集),并注意
. 
- 设
为一个集合。- 证明
,即幂集,是
上的拓扑(称为离散拓扑),并且当
具有该拓扑,
是任意一个函数,其中
是一个拓扑空间,那么
自动是连续的。
- 证明
是
上的拓扑(称为平凡拓扑),并且当
具有该拓扑,
是任意一个拓扑空间,
是任意一个函数,那么
是连续的。