跳转到内容

一般拓扑/定义、特征

来自维基教科书,开放世界开放书籍

定义(拓扑):

为任意集合。关于 的 **拓扑** 是 的幂集的子集 ,满足以下三个公理

定义(拓扑空间):

**拓扑空间** 是一个集合 以及关于它的一个拓扑

示例(欧几里得拓扑):

并考虑集合 。 然后我们定义

.

上的拓扑,称为欧几里得拓扑

定义(开集):

是一个拓扑空间, 是它的拓扑。开集是指任何包含在 中的集合。

定义(闭集):

是一个拓扑空间。一个子集 称为闭集,当且仅当 是开集,即包含在 的拓扑中。

定义(闭开集):

是一个拓扑空间。一个子集 称为闭开集,当且仅当它同时是开集和闭集。

命题(从闭集定义拓扑):

是一个集合,设 的子集的集合,使得以下公理成立

那么存在一个唯一的拓扑 上,使得 精确包含该拓扑的闭集,反之,任何拓扑的闭集满足 1. - 3.

证明: 我们声称,在满足命题中 1.-3. 的集合 (称此集合为 )与 上的拓扑之间存在一个双射,我们将用 表示,因此如果这个双射表示为 ,那么拓扑 的闭集由 精确给出。实际上,这个映射

给出,其逆为 .

这些通过直接计算互为逆,并且 的闭集恰好是 。我们必须证明 是定义良好的,也就是说,它将 映射到 ,并且逆映射也是定义良好的,因为它将 映射到 。首先令 为拓扑。由于 并且 ,上述条件 1 被满足。现在假设 ,因此对于 ,我们有 ,对于某个 。由于 是拓扑,,此外,根据德摩根定律

.

最后,假设 中元素的一个族,并且对于 再次写出 。由于 是一个拓扑,,并且根据德摩根定律

,

满足 1. - 3. 反方向可以通过类似的计算来证明。因此,唯一一个闭集为 的拓扑是 ,如果 是一个拓扑,,其闭集,满足 1.-3.

命题(拓扑按包含关系排序):

如果 是任何集合,并且 上的拓扑,则 的拓扑上定义了一个序。

证明:这是一种特殊情况,因为幂集的子集按包含排序

定义(拓扑的比较):

为任意集合, 上的拓扑。只要 ,我们说 **更粗糙**,而 **更精细**。

命题(拓扑的交集是一个拓扑):

为集合 上的一族拓扑。那么

上的拓扑。

证明:这从交集保留封闭性质得出,注意到有限交集和任意并集是 上的运算(以及整体和空集,即 0 阶运算),并且每个拓扑都对这些运算封闭。

定义(开邻域):

为一个拓扑空间,并令 。一个 的**邻域**是一个开集 (即 ),使得 .

定义(邻域):

为一个拓扑空间,并令 。一个 的**邻域**是一个集合 ,使得存在一个开集 ,使得 并且 。所有 的邻域的集合记作 .

定理(用邻域系刻画拓扑结构):

假设 是一个集合,并且对于每个 ,我们给定一个集合 ,使得 对于每个 。那么集合 构成 上的拓扑结构的邻域当且仅当满足以下条件:

  1. (超集封闭性)

在这种情况下, 作为邻域的拓扑由邻域唯一确定,并且等于

.

Proof: Let's first show that whenever the sets are the neighbourhoods of a topology on , then they satisfy 1. - 4. Indeed, is an (open) neighbourhood of every of its points. Then, whenever for some , we find open sets such that and , note that and that is open, as finite intersections of open sets are open. If , open and arbitrary, then so that . Finally, if , choose an open s.t. , then is open, hence a neighbourhood of all of its points. Now suppose that for each we are given and these neighbourhoods satisfy the conditions 1.-4. Then we define

and claim that is a topology. Indeed, , since then the condition is trivially satisfied, since there are no . Furthermore, , since whenever , and is a neighbourhood of . Then, suppose that is a family of sets contained in , and set . We claim that . Indeed, if , pick so that , then such that since , and finally note that . Then, let and pick so that and . Then , so that , since .

Now we claim that for each , the neighbourhoods of with respect to are precisely . Indeed, let first a neighbourhood of be given. Choose open. Then by definition of , there exists such that , and since is closed under supersets, . Conversely, suppose . Define , and claim that and is open in . Indeed, is clear, since is necessary for being a neighbourhood of . Let now . By 4., choose so that and is in for all . Thus for all , so that , and since was arbitrary, is open, and is a neighbourhood in of .

最后,设 为任何以 作为邻域的拓扑,并断言 如上定义。事实上,如果,则 本身就是其每个点的邻域,因此在 中。反之,如果,则对于每个,选择 的一个邻域 包含在 中(为了避免选择公理,选择它们是所有此类集合的并集),并注意

.
  1. 为一个集合。
    1. 证明 ,即幂集,是 上的拓扑(称为离散拓扑),并且当 具有该拓扑, 是任意一个函数,其中 是一个拓扑空间,那么 自动是连续的。
    2. 证明 上的拓扑(称为平凡拓扑),并且当 具有该拓扑, 是任意一个拓扑空间, 是任意一个函数,那么 是连续的。
华夏公益教科书