跳转到内容

一般拓扑/同伦

来自维基教科书,开放的书籍,开放的世界

定义(同伦):

是拓扑空间,令 是两个连续映射。在 之间的同伦是一个连续映射

,使得:

(注意, 的第一个参数通常用下标表示。)如果存在这样的 ,则函数 被称为同伦的。

这意味着 连续地“变换”为 ,反之亦然。

定义(相对同伦):

为拓扑空间,令 为子集。如果 是另一个拓扑空间,并且如果 是连续函数,那么 被称为**相对于 同伦**(简称:)如果存在一个同伦 之间,使得对于所有 ,有

命题(相对同伦是等价关系):

如果 是一个拓扑空间, 是一个子集,并且 是另一个拓扑空间,那么关系

上的一个等价关系。

Proof: First, note that by defining for , that is continuous, since for open, from which we gain reflexivity as also whenever . Symmetry follows upon considering, given a homotopy from to , the homotopy , which is continuous as the composition of with the continuous function ; indeed, the latter map is continuous since both of its components are; it is also a homotopy relative to , since for . Finally, note that transitivity holds, since if via the homotopy and via the homotopy , then via the homotopy

,

它是连续的,因为它在构成整个空间的两个闭集上是 连续的,并且相对于 ,因为 都相对于

定义(收缩):

是一个拓扑空间,设 的一个子集。 的一个 **收缩** 是一个连续函数 ,使得 ,即恒等式。

定义(形变收缩):

是一个拓扑空间,设 的一个子集。 的一个 **形变收缩** 是一个连续函数 ,使得对于所有 都有 (即 )并且 是一个到 的收缩。

注意第一个参数用下标表示,因此我们不写,而是写

也就是说,形变缩回是恒等映射和到的缩回映射之间的同伦。

定义(同伦等价):

是拓扑空间。 之间的**同伦等价**是一对连续函数,使得

命题(形变缩回诱导同伦等价):

是拓扑空间,设 是一个子集,并设 的形变缩回。 那么,由一对 给出同伦等价,其中 是嵌入映射。

证明: 我们有 ,它等于(因此同伦于)。此外, 之间的同伦由 本身给出。

定义(可缩空间):

为拓扑空间。 被称为可缩空间当且仅当存在一个点 使得 的变形收缩。

命题(可缩空间是路径连通的):

为可缩空间,它收缩到一个点 。那么任意两个点 可以通过一条经过 的路径连接起来。

证明:对于任意点,如果 的变形缩回,我们得到一条从 的路径,方式如下:

,

它作为连续函数的复合是连续的,因为映射 是连续的,因为第一项是恒等函数,第二项是常数函数。

定义(零同伦):

是拓扑空间之间的连续函数。 被称为零同伦,当且仅当它与一个常数函数同伦,即,与一个函数 同伦,使得存在 使得对于所有的 都成立。

命题(可缩性的刻画):

是一个拓扑空间。下列命题等价

  1. 是可缩的
  2. 上的恒等映射是零同伦的
  3. 与单点空间同伦等价
  4. 对于任意拓扑空间,任意连续函数 是零同伦的
  5. 对于每个拓扑空间 ,任何两个连续函数 是同伦的。

Proof: Suppose first that is contractible, and let be the contraction. Then is simultaneously a homotopy between the identity and a constant map, where the latter has the value of the point onto which contracts. If the identity is homotopic to a constant map, and is the respective homotopy, then is also a deformation retraction and we conclude 3. since this deformation retraction induces a homotopy equivalence between a one-point space and . Let now be a topological space and a continuous function. Suppose further that and constitute a homotopy equivalence. Then in particular via some homotopy . But is a constant map. We then get via the homotopy , so that is nullhomotopic. Suppose now that and are two continuous functions. They will both be nullhomotopic, and if we can show that is path-connected and is the constant function to which is homotopic and for any , then they will both be homotopic to , since is homotopic to any constant map via , where is a curve from to the point of the other constant map . But is path-connected, since upon choosing , the two-point space with discrete topology, we get that the (continuous) function sending and to two points is nullhomotopic, and the homotopy yields a path between and by the way of

,其中

最后,如果从任何空间到 的任何两个连续函数是同伦的,我们可以选择 ,并将其中一个映射选择为任何常数映射,另一个映射选择为恒等映射;这两个映射之间的同伦就产生了所需的形变收缩。

定义(同伦扩张性质):

为拓扑空间, 为子集。当且仅当对于任何拓扑空间 和任何连续函数 ,使得 与另一个映射 通过同伦 同伦,那么存在同伦 使得

命题(通过缩回表征同伦扩张性质):

为拓扑空间, 为子集。 具有同伦扩张性质当且仅当存在从 的缩回。

Proof: Suppose first that does have the homotopy extension property. Then pick and define by . Then is homotopic to the function via , and then by the homotopy extension property we get a homotopy of to some other function . By the form of , restricts to the identity on , and further it maps to , so that is a retraction. Suppose now that is a retract of via the function , where we define to ease notation. Let (where is some topological space) be a function and a homotopy so that . We define

并声称它是连续的。请注意, (它是连续的)与映射的合成

,

因此,只需证明 是连续的。为此,只需证明只要 是一个集合,使得 是开集,那么 本身就是开集;事实上,如果是这种情况,那么只要 的一个开子集,我们将有

is open. So suppose that has said property. We show that is open by fixing a and finding an open neighbourhood of in that is contained within . If , then we may just choose a suitable product neighbourhood since cylinders are a basis of the product topology and by the definition of the subspace topology. If and , we may just choose the set . The only remaining case is the case and . If that is the case, suppose first that , and consider the point . We write the retraction as . Since and for all , we get that , since denoting the neighbourhood filter of by , we get that converges to by continuity of (which follows from the characterisation of continuity of functions to a space with initial topology), but is contained in each set , being a neighbourhood of , since , by definition of the product topology, always contains a point of the form , where , and we conclude since is Hausdorff.

对于每个 ,我们将 定义为 的最大开子集,使得 ;由于具有此属性的集合在并运算下是封闭的,因此存在这样一个最大集合,我们取所有具有此属性的集合的并集。然后定义

;

is then an open subset of . Now , since otherwise, for all we have . However, then for arbitrary and , we get that , since if , then by continuity of , we find and open with , so that , which implies in particular that . However, for , we simply have since is a retraction, and hence we get and . Hence, since , and thus implies . However, note that still ; indeed, by what was proven above, we have , and then, since is a retraction whence , we must have . We conclude that for all . Now we observe that if is the projection from to , then , since whenever so that , we find an open and an such that , and we then write , where is open, and obtain . By continuity of , we then obtain , since the preimage of the complement of will be closed in . But , so that in fact , a contradiction.

因此,选择 使得 ; 那么邻域 将作为 的开邻域,包含在 内,使用子空间和乘积拓扑的定义。

华夏公益教科书