这些总结了本书中使用的符号     2      {\displaystyle 2}         3      {\displaystyle 3}      
        i     1     2         ϕ   1      (  i  )     1     2         ϕ   2      (  i  )     2     1              i     1     2     3         ϕ   1      (  i  )     1     2     3         ϕ   2      (  i  )     1     3     2         ϕ   3      (  i  )     2     1     3         ϕ   4      (  i  )     2     3     1         ϕ   5      (  i  )     3     1     2         ϕ   6      (  i  )     3     2     1              {\displaystyle {\begin{array}{c|cc}i&1&2\\\hline \phi _{1}(i)&1&2\\\phi _{2}(i)&2&1\end{array}}\qquad {\begin{array}{c|ccc}i&1&2&3\\\hline \phi _{1}(i)&1&2&3\\\phi _{2}(i)&1&3&2\\\phi _{3}(i)&2&1&3\\\phi _{4}(i)&2&3&1\\\phi _{5}(i)&3&1&2\\\phi _{6}(i)&3&2&1\end{array}}}     
 
建议所有读者完成此练习。 建议所有读者完成此练习。 建议所有读者完成此练习。 
问题 3 
使用排列展开公式推导     3  ×  3      {\displaystyle 3\!\times \!3}     
解答 
根据 例 3.6   给出以下内容。
          |      t   1  ,  1          t   1  ,  2          t   1  ,  3             t   2  ,  1          t   2  ,  2          t   2  ,  3             t   3  ,  1          t   3  ,  2          t   3  ,  3            |         =       t   1  ,  1       t   2  ,  2       t   3  ,  3       |   P    ϕ   1          |    +   t   1  ,  1       t   2  ,  3       t   3  ,  2       |   P    ϕ   2          |          +   t   1  ,  2       t   2  ,  1       t   3  ,  3       |   P    ϕ   3          |    +   t   1  ,  2       t   2  ,  3       t   3  ,  1       |   P    ϕ   4          |          +   t   1  ,  3       t   2  ,  1       t   3  ,  2       |   P    ϕ   5          |    +   t   1  ,  3       t   2  ,  2       t   3  ,  1       |   P    ϕ   6          |                  =       t   1  ,  1       t   2  ,  2       t   3  ,  3      (  +  1  )  +   t   1  ,  1       t   2  ,  3       t   3  ,  2      (  −  1  )        +   t   1  ,  2       t   2  ,  1       t   3  ,  3      (  −  1  )  +   t   1  ,  2       t   2  ,  3       t   3  ,  1      (  +  1  )        +   t   1  ,  3       t   2  ,  1       t   3  ,  2      (  +  1  )  +   t   1  ,  3       t   2  ,  2       t   3  ,  1      (  −  1  )                      {\displaystyle {\begin{array}{rl}{\begin{vmatrix}t_{1,1}&t_{1,2}&t_{1,3}\\t_{2,1}&t_{2,2}&t_{2,3}\\t_{3,1}&t_{3,2}&t_{3,3}\end{vmatrix}}&={\begin{aligned}&t_{1,1}t_{2,2}t_{3,3}\left|P_{\phi _{1}}\right|+t_{1,1}t_{2,3}t_{3,2}\left|P_{\phi _{2}}\right|\\&\quad +t_{1,2}t_{2,1}t_{3,3}\left|P_{\phi _{3}}\right|+t_{1,2}t_{2,3}t_{3,1}\left|P_{\phi _{4}}\right|\\&\quad +t_{1,3}t_{2,1}t_{3,2}\left|P_{\phi _{5}}\right|+t_{1,3}t_{2,2}t_{3,1}\left|P_{\phi _{6}}\right|\end{aligned}}\\&={\begin{aligned}&t_{1,1}t_{2,2}t_{3,3}(+1)+t_{1,1}t_{2,3}t_{3,2}(-1)\\&\quad +t_{1,2}t_{2,1}t_{3,3}(-1)+t_{1,2}t_{2,3}t_{3,1}(+1)\\&\quad +t_{1,3}t_{2,1}t_{3,2}(+1)+t_{1,3}t_{2,2}t_{3,1}(-1)\end{aligned}}\end{array}}}      
问题 4 
列出所有     4      {\displaystyle 4}     
解答 
这是所有     ϕ  (  1  )  =  1      {\displaystyle \phi (1)=1}     
         ϕ   1      =  ⟨  1  ,  2  ,  3  ,  4  ⟩   ϕ   2      =  ⟨  1  ,  2  ,  4  ,  3  ⟩   ϕ   3      =  ⟨  1  ,  3  ,  2  ,  4  ⟩         ϕ   4      =  ⟨  1  ,  3  ,  4  ,  2  ⟩   ϕ   5      =  ⟨  1  ,  4  ,  2  ,  3  ⟩   ϕ   6      =  ⟨  1  ,  4  ,  3  ,  2  ⟩              {\displaystyle {\begin{array}{rl}&\phi _{1}=\langle 1,2,3,4\rangle \quad \phi _{2}=\langle 1,2,4,3\rangle \quad \phi _{3}=\langle 1,3,2,4\rangle \\&\quad \phi _{4}=\langle 1,3,4,2\rangle \quad \phi _{5}=\langle 1,4,2,3\rangle \quad \phi _{6}=\langle 1,4,3,2\rangle \end{array}}}         ϕ  (  1  )  =  1      {\displaystyle \phi (1)=1}     
         ϕ   7      =  ⟨  2  ,  1  ,  3  ,  4  ⟩   ϕ   8      =  ⟨  2  ,  1  ,  4  ,  3  ⟩   ϕ   9      =  ⟨  2  ,  3  ,  1  ,  4  ⟩         ϕ   10      =  ⟨  2  ,  3  ,  4  ,  1  ⟩   ϕ   11      =  ⟨  2  ,  4  ,  1  ,  3  ⟩   ϕ   12      =  ⟨  2  ,  4  ,  3  ,  1  ⟩              {\displaystyle {\begin{array}{rl}&\phi _{7}=\langle 2,1,3,4\rangle \quad \phi _{8}=\langle 2,1,4,3\rangle \quad \phi _{9}=\langle 2,3,1,4\rangle \\&\quad \phi _{10}=\langle 2,3,4,1\rangle \quad \phi _{11}=\langle 2,4,1,3\rangle \quad \phi _{12}=\langle 2,4,3,1\rangle \end{array}}}         ϕ  (  1  )  =  3      {\displaystyle \phi (1)=3}     
         ϕ   13      =  ⟨  3  ,  1  ,  2  ,  4  ⟩   ϕ   14      =  ⟨  3  ,  1  ,  4  ,  2  ⟩   ϕ   15      =  ⟨  3  ,  2  ,  1  ,  4  ⟩         ϕ   16      =  ⟨  3  ,  2  ,  4  ,  1  ⟩   ϕ   17      =  ⟨  3  ,  4  ,  1  ,  2  ⟩   ϕ   18      =  ⟨  3  ,  4  ,  2  ,  1  ⟩              {\displaystyle {\begin{array}{rl}&\phi _{13}=\langle 3,1,2,4\rangle \quad \phi _{14}=\langle 3,1,4,2\rangle \quad \phi _{15}=\langle 3,2,1,4\rangle \\&\quad \phi _{16}=\langle 3,2,4,1\rangle \quad \phi _{17}=\langle 3,4,1,2\rangle \quad \phi _{18}=\langle 3,4,2,1\rangle \end{array}}}         ϕ  (  1  )  =  4      {\displaystyle \phi (1)=4}     
         ϕ   19      =  ⟨  4  ,  1  ,  2  ,  3  ⟩   ϕ   20      =  ⟨  4  ,  1  ,  3  ,  2  ⟩   ϕ   21      =  ⟨  4  ,  2  ,  1  ,  3  ⟩         ϕ   22      =  ⟨  4  ,  2  ,  3  ,  1  ⟩   ϕ   23      =  ⟨  4  ,  3  ,  1  ,  2  ⟩   ϕ   24      =  ⟨  4  ,  3  ,  2  ,  1  ⟩              {\displaystyle {\begin{array}{rl}&\phi _{19}=\langle 4,1,2,3\rangle \quad \phi _{20}=\langle 4,1,3,2\rangle \quad \phi _{21}=\langle 4,2,1,3\rangle \\&\quad \phi _{22}=\langle 4,2,3,1\rangle \quad \phi _{23}=\langle 4,3,1,2\rangle \quad \phi _{24}=\langle 4,3,2,1\rangle \end{array}}}      
问题 6 
证明     f      {\displaystyle f}            v  →        ,     w  →        ∈  V      {\displaystyle {\vec {v}},{\vec {w}}\in V}          k   1      ,   k   2      ∈   R        {\displaystyle k_{1},k_{2}\in \mathbb {R} }     
    f  (      ρ  →         1      ,  …  ,   k   1          v  →         1      +   k   2          v  →         2      ,  …  ,      ρ  →         n      )  =   k   1      f  (      ρ  →         1      ,  …  ,      v  →         1      ,  …  ,      ρ  →         n      )  +   k   2      f  (      ρ  →         1      ,  …  ,      v  →         2      ,  …  ,      ρ  →         n      )      {\displaystyle f({\vec {\rho }}_{1},\dots ,k_{1}{\vec {v}}_{1}+k_{2}{\vec {v}}_{2},\dots ,{\vec {\rho }}_{n})=k_{1}f({\vec {\rho }}_{1},\dots ,{\vec {v}}_{1},\dots ,{\vec {\rho }}_{n})+k_{2}f({\vec {\rho }}_{1},\dots ,{\vec {v}}_{2},\dots ,{\vec {\rho }}_{n})}     
解答 
对于“如果”部分,第一个条件来自取     k   1      =   k   2      =  1      {\displaystyle k_{1}=k_{2}=1}          k   2      =  0      {\displaystyle k_{2}=0}     
“当且仅当”部分也很常规。从    f  (      ρ  →         1      ,  …  ,   k   1          v  →         1      +   k   2          v  →         2      ,  …  ,      ρ  →         n      )      {\displaystyle f({\vec {\rho }}_{1},\dots ,k_{1}{\vec {v}}_{1}+k_{2}{\vec {v}}_{2},\dots ,{\vec {\rho }}_{n})}         =  f  (      ρ  →         1      ,  …  ,   k   1          v  →         1      ,  …  ,      ρ  →         n      )  +  f  (      ρ  →         1      ,  …  ,   k   2          v  →         2      ,  …  ,      ρ  →         n      )      {\displaystyle =f({\vec {\rho }}_{1},\dots ,k_{1}{\vec {v}}_{1},\dots ,{\vec {\rho }}_{n})+f({\vec {\rho }}_{1},\dots ,k_{2}{\vec {v}}_{2},\dots ,{\vec {\rho }}_{n})}     
 
问题 7 
求此矩阵的排列展开式中唯一的非零项。
      |     0     1     0     0        1     0     1     0        0     1     0     1        0     0     1     0        |          {\displaystyle {\begin{vmatrix}0&1&0&0\\1&0&1&0\\0&1&0&1\\0&0&1&0\end{vmatrix}}}     
解答 
为了在排列展开中得到一个非零项,我们必须使用     1  ,  2      {\displaystyle 1,2}         4  ,  3      {\displaystyle 4,3}         2  ,  1      {\displaystyle 2,1}         3  ,  4      {\displaystyle 3,4}         ⟨  2  ,  1  ,  4  ,  3  ⟩      {\displaystyle \langle 2,1,4,3\rangle }         +  1      {\displaystyle +1}     
      (     0     1     0     0        1     0     0     0        0     0     0     1        0     0     1     0        )          {\displaystyle {\begin{pmatrix}0&1&0&0\\1&0&0&0\\0&0&0&1\\0&0&1&0\end{pmatrix}}}          ρ   1      ↔   ρ   2          {\displaystyle \rho _{1}\leftrightarrow \rho _{2}}          ρ   3      ↔   ρ   4          {\displaystyle \rho _{3}\leftrightarrow \rho _{4}}     
 
问题 8 
如果我们将定义中的性质 (4) 改为      |  I  |    =  2      {\displaystyle \left|I\right|=2}     
解答 
它们都会翻倍。
 
问题 9 
验证 [线性代数/排列展开#cor:ColSwapChgSign](/wiki/Linear_Algebra/The_Permutation_Expansion#cor:ColSwapChgSign) 中的第二和第三条语句。
解答 
对于第二条语句,给定一个矩阵,将其转置,交换行,再转置回来。结果是交换了列,行列式变化了一个因子     −  1      {\displaystyle -1}     
 
建议所有读者完成此练习。 
问题 11 
判断真假:一个矩阵,其元素只有 0 或 1,它的行列式等于 0、1 或 -1。([Strang 1980](#CITEREFStrang1980))
解答 
假。
      |     1     −  1        1     1        |      =  2      {\displaystyle {\begin{vmatrix}1&-1\\1&1\end{vmatrix}}=2}      
问题 12 
证明一个     5  ×  5      {\displaystyle 5\!\times \!5}         120      {\displaystyle 120}      如果     1  ,  2      {\displaystyle 1,2}       
解答 
第一行元素的列索引有五种选择。然后,第二行元素的列索引有四种选择(第一行使用的列索引不能在此使用)。继续下去,我们得到     5  ⋅  4  ⋅  3  ⋅  2  ⋅  1  =  120      {\displaystyle 5\cdot 4\cdot 3\cdot 2\cdot 1=120}      一旦我们选择第一行的第二列,我们就可以用     4  ⋅  3  ⋅  2  ⋅  1  =  24      {\displaystyle 4\cdot 3\cdot 2\cdot 1=24}       
 
问题 13 
有多少个     n      {\displaystyle n}     
解答 
    n  ⋅  (  n  −  1  )  ⋯  2  ⋅  1  =  n  !      {\displaystyle n\cdot (n-1)\cdots 2\cdot 1=n!}     
 
建议所有读者完成此练习。 
问题 15 
为了确保一个     4  ×  4      {\displaystyle 4\!\times \!4}     
解答 
证明三个零的任何放置都不足以使行列式为零是常规的。四个零足以使行列式为零;将它们全部放在同一行或同一列。
 
建议所有读者完成此练习。 
问题 16 
如果我们有     n      {\displaystyle n}         (   x   1      ,   y   1      )  ,  (   x   2      ,   y   2      )  ,  …  ,  (   x   n      ,   y   n      )      {\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),\dots \,,(x_{n},y_{n})}         p  (  x  )  =   a   n  −  1       x   n  −  1      +   a   n  −  2       x   n  −  2      +  ⋯  +   a   1      x  +   a   0          {\displaystyle p(x)=a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+\dots +a_{1}x+a_{0}}         n      {\displaystyle n}         n      {\displaystyle n}     
      |     1     1     …     1         x   1          x   2         …      x   n               x   1         2            x   2         2         …        x   n         2            ⋮           x   1         n  −  1            x   2         n  −  1         …        x   n         n  −  1            |          {\displaystyle {\begin{vmatrix}1&1&\ldots &1\\x_{1}&x_{2}&\ldots &x_{n}\\{x_{1}}^{2}&{x_{2}}^{2}&\ldots &{x_{n}}^{2}\\&\vdots \\{x_{1}}^{n-1}&{x_{2}}^{n-1}&\ldots &{x_{n}}^{n-1}\end{vmatrix}}}     等于所有索引     i  ,  j  ∈  {  1  ,  …  ,  n  }      {\displaystyle i,j\in \{1,\dots ,n\}}         i  <  j      {\displaystyle i<j}          x   j      −   x   i          {\displaystyle x_{j}-x_{i}}          x   i          {\displaystyle x_{i}}     
解答 
    n  =  3      {\displaystyle n=3}         −   x   1       ρ   2      +   ρ   3          {\displaystyle -x_{1}\rho _{2}+\rho _{3}}         −   x   1       ρ   1      +   ρ   2          {\displaystyle -x_{1}\rho _{1}+\rho _{2}}     
      |     1     1     1         x   1          x   2          x   3             x   1     2          x   2     2          x   3     2            |      =    |     1     1     1         x   1          x   2          x   3            0     (  −   x   1      +   x   2      )   x   2         (  −   x   1      +   x   3      )   x   3            |      =    |     1     1     1        0     −   x   1      +   x   2         −   x   1      +   x   3            0     (  −   x   1      +   x   2      )   x   2         (  −   x   1      +   x   3      )   x   3            |          {\displaystyle {\begin{vmatrix}1&1&1\\x_{1}&x_{2}&x_{3}\\x_{1}^{2}&x_{2}^{2}&x_{3}^{2}\end{vmatrix}}={\begin{vmatrix}1&1&1\\x_{1}&x_{2}&x_{3}\\0&(-x_{1}+x_{2})x_{2}&(-x_{1}+x_{3})x_{3}\end{vmatrix}}={\begin{vmatrix}1&1&1\\0&-x_{1}+x_{2}&-x_{1}+x_{3}\\0&(-x_{1}+x_{2})x_{2}&(-x_{1}+x_{3})x_{3}\end{vmatrix}}}     然后,     x   2       ρ   2      +   ρ   3          {\displaystyle x_{2}\rho _{2}+\rho _{3}}     
    =    |     1     1     1        0     −   x   1      +   x   2         −   x   1      +   x   3            0     0     (  −   x   1      +   x   3      )  (  −   x   2      +   x   3      )        |      =  (   x   2      −   x   1      )  (   x   3      −   x   1      )  (   x   3      −   x   2      )      {\displaystyle ={\begin{vmatrix}1&1&1\\0&-x_{1}+x_{2}&-x_{1}+x_{3}\\0&0&(-x_{1}+x_{3})(-x_{2}+x_{3})\end{vmatrix}}=(x_{2}-x_{1})(x_{3}-x_{1})(x_{3}-x_{2})}      
问题 17 
矩阵可以分成块 ,例如
     (      1     2     0        3     4     0        0     0     −  2          )        {\displaystyle \left({\begin{array}{cc|c}1&2&0\\3&4&0\\\hline 0&0&-2\end{array}}\right)}     它显示了四个块,左上角和右下角是    2  ×  2      {\displaystyle 2\!\times \!2}         1  ×  1      {\displaystyle 1\!\times \!1}     
    T  =   (      J      Z   2             Z   1         K          )        {\displaystyle T=\left({\begin{array}{c|c}J&Z_{2}\\\hline Z_{1}&K\end{array}}\right)}     其中     J      {\displaystyle J}         K      {\displaystyle K}          Z   1          {\displaystyle Z_{1}}          Z   2          {\displaystyle Z_{2}}          |  T  |    =   |  J  |    ⋅   |  K  |        {\displaystyle \left|T\right|=\left|J\right|\cdot \left|K\right|}     
解答 
设     T      {\displaystyle T}         n  ×  n      {\displaystyle n\!\times \!n}         J      {\displaystyle J}         p  ×  p      {\displaystyle p\!\times \!p}         K      {\displaystyle K}         q  ×  q      {\displaystyle q\!\times \!q}     
     ∑    permutations     ϕ          {\displaystyle \sum _{{\text{permutations }}\phi }}          |  T  |    =   ∑    permutations     ϕ       t   1  ,  ϕ  (  1  )       t   2  ,  ϕ  (  2  )      …   t   n  ,  ϕ  (  n  )       |   P   ϕ      |        {\displaystyle \left|T\right|=\sum _{{\text{permutations }}\phi }t_{1,\phi (1)}t_{2,\phi (2)}\dots t_{n,\phi (n)}\left|P_{\phi }\right|}     因为     T      {\displaystyle T}         ϕ      {\displaystyle \phi }         p  +  1  ,  …  ,  n      {\displaystyle p+1,\dots ,n}         p      {\displaystyle p}         ϕ  (  1  )  ,  …  ,  ϕ  (  p  )      {\displaystyle \phi (1),\dots ,\phi (p)}         ϕ      {\displaystyle \phi }         0      {\displaystyle 0}         ϕ  (  1  )  =  n      {\displaystyle \phi (1)=n}          t   1  ,  ϕ  (  1  )       t   2  ,  ϕ  (  2  )      …   t   n  ,  ϕ  (  n  )          {\displaystyle t_{1,\phi (1)}t_{2,\phi (2)}\dots t_{n,\phi (n)}}         0      {\displaystyle 0}         1  ,  …  ,  p      {\displaystyle 1,\dots ,p}         p  +  1  ,  …  ,  p  +  q      {\displaystyle p+1,\dots ,p+q}          |  J  |    ⋅   |  K  |        {\displaystyle \left|J\right|\cdot \left|K\right|}     
      [       ∑           perms      ϕ   1                of     1  ,  …  ,  p               t   1  ,   ϕ   1      (  1  )      ⋯   t   p  ,   ϕ   1      (  p  )       |   P    ϕ   1          |      ]      ⋅    [       ∑           perms      ϕ   2                of     p  +  1  ,  …  ,  p  +  q               t   p  +  1  ,   ϕ   2      (  p  +  1  )      ⋯   t   p  +  q  ,   ϕ   2      (  p  +  q  )       |   P    ϕ   2          |      ]          {\displaystyle {\bigg [}\sum _{\begin{array}{c}\\[-19pt]\scriptstyle {\text{perms }}\phi _{1}\\[-5pt]\scriptstyle {\text{of }}1,\dots ,p\end{array}}t_{1,\phi _{1}(1)}\cdots t_{p,\phi _{1}(p)}\left|P_{\phi _{1}}\right|{\bigg ]}\cdot {\bigg [}\sum _{\begin{array}{c}\\[-19pt]\scriptstyle {\text{perms }}\phi _{2}\\[-5pt]\scriptstyle {\text{of }}p+1,\dots ,p+q\end{array}}t_{p+1,\phi _{2}(p+1)}\cdots t_{p+q,\phi _{2}(p+q)}\left|P_{\phi _{2}}\right|{\bigg ]}}      
建议所有读者完成此练习。 
问题 18 
证明对于任何     n  ×  n      {\displaystyle n\!\times \!n}         T      {\displaystyle T}         n      {\displaystyle n}         r      {\displaystyle r}         T  −  r  I      {\displaystyle T-rI}     
解答 
    n  =  3      {\displaystyle n=3}     
     |   T  −  r  I    |    =    |      t   1  ,  1      −  x      t   1  ,  2          t   1  ,  3             t   2  ,  1          t   2  ,  2      −  x      t   2  ,  3             t   3  ,  1          t   3  ,  2          t   3  ,  3      −  x        |          {\displaystyle \left|T-rI\right|={\begin{vmatrix}t_{1,1}-x&t_{1,2}&t_{1,3}\\t_{2,1}&t_{2,2}-x&t_{2,3}\\t_{3,1}&t_{3,2}&t_{3,3}-x\end{vmatrix}}}     排列展开式中的每一项都包含从矩阵中取出的三个因子(例如,    (   t   1  ,  1      −  x  )  (   t   2  ,  2      −  x  )  (   t   3  ,  3      −  x  )      {\displaystyle (t_{1,1}-x)(t_{2,2}-x)(t_{3,3}-x)}         (   t   1  ,  1      −  x  )  (   t   2  ,  3      )  (   t   3  ,  2      )      {\displaystyle (t_{1,1}-x)(t_{2,3})(t_{3,2})}         x      {\displaystyle x}         3      {\displaystyle 3}     
一般来说,排列展开式表明行列式可以写成一项之和,每一项都有    n      {\displaystyle n}         n      {\displaystyle n}         n      {\displaystyle n}         n      {\displaystyle n}     
 
问题 20 
证明
      |     x  −  2     x  −  3     x  −  4        x  +  1     x  −  1     x  −  3        x  −  4     x  −  7     x  −  10        |      =  0.      {\displaystyle {\begin{vmatrix}x-2&x-3&x-4\\x+1&x-1&x-3\\x-4&x-7&x-10\end{vmatrix}}=0.}     (Silverman & Trigg 1963 )
解答 
这是引用的来源中给出的答案。 
当任何一列的元素从其他两列的每个元素中减去时,导出的行列式的两列中的元素成比例,因此行列式消失。也就是说,
      |     2     1     x  −  4        4     2     x  −  3        6     3     x  −  10        |      =    |     1     x  −  3     −  1        2     x  −  1     −  2        3     x  −  7     −  3        |      =    |     x  −  2     −  1     −  2        x  +  1     −  2     −  4        x  −  4     −  3     −  6        |      =  0.      {\displaystyle {\begin{vmatrix}2&1&x-4\\4&2&x-3\\6&3&x-10\end{vmatrix}}={\begin{vmatrix}1&x-3&-1\\2&x-1&-2\\3&x-7&-3\end{vmatrix}}={\begin{vmatrix}x-2&-1&-2\\x+1&-2&-4\\x-4&-3&-6\end{vmatrix}}=0.}      
? 问题 22 
证明帕斯卡三角形左上角     n   2          {\displaystyle n^{2}}     
        1     1     1     1     .     .        1     2     3     .     .        1     3     .     .        1     .     .        .        .              {\displaystyle {\begin{array}{cccccc}1&1&1&1&.&.\\1&2&3&.&.\\1&3&.&.&&\\1&.&.&&&\\.\\.\end{array}}}     的值为一。(Rupp & Aude 1931 )
解答 
这是引文来源中给出的答案。  用     D   n          {\displaystyle D_{n}}          a   i  ,  j          {\displaystyle a_{i,j}}         i      {\displaystyle i}         j      {\displaystyle j}     
     a   i  ,  j      =   a   i  ,  j  −  1      +   a   i  −  1  ,  j      ,   a   1  ,  j      =   a   i  ,  1      =  1.      {\displaystyle a_{i,j}=a_{i,j-1}+a_{i-1,j},\qquad a_{1,j}=a_{i,1}=1.}     从      D   n          {\displaystyle D_{n}}         n  −  1      {\displaystyle n-1}          a   i  ,  j          {\displaystyle a_{i,j}}          a   i  ,  j  −  1          {\displaystyle a_{i,j-1}}          a   1  ,  1      =  1      {\displaystyle a_{1,1}=1}          a   i  ,  j  −  1          {\displaystyle a_{i,j-1}}          a   i  −  1  ,  j  −  1          {\displaystyle a_{i-1,j-1}}          a   i  ,  j          {\displaystyle a_{i,j}}          a   i  −  1  ,  j  −  1          {\displaystyle a_{i-1,j-1}}          D   n      =   D   n  +  i          {\displaystyle D_{n}=D_{n+i}}     
     D   n      =   D   n  −  1      =   D   n  −  2      =  ⋯  =   D   2      =  1.      {\displaystyle D_{n}=D_{n-1}=D_{n-2}=\dots =D_{2}=1.}      
Silverman, D. L. (proposer); Trigg, C. W. (solver) (1963), "Quickie 237", Mathematics Magazine , American Mathematical Society, 36  (1) Strang, Gilbert (1980), Linear Algebra and its Applications  (2nd ed.), Hartcourt Brace Javanovich Trigg, C. W. (proposer) (1963), "Quickie 307", Mathematics Magazine , American Mathematical Society, 36  (1): 77 Trigg, C. W. (proposer); Walker, R. J. (solver) (1949), "Elementary Problem 813", American Mathematical Monthly , American Mathematical Society, 56  (1) Rupp, C. A. (proposer); Aude, H. T. R. (solver) (1931), "Problem 3468", American Mathematical Monthly , American Mathematical Society, 37  (6): 355