跳转到内容

光学/费马原理

来自维基教科书,开放的书籍,开放的世界

费马原理,也称为“最小时间原理”,指出

“光线以最短时间到达目的地的路径传播”。

它是光学的基本定律,其他几何光学定律可以从它推导出来。

反射定律的推导

[编辑 | 编辑源代码]

利用费马原理推导反射定律很简单。反射定律可以用初等微积分三角学推导。反射定律的推广是斯涅尔定律,它将在下面使用相同的原理推导出来。

光线传播的介质没有改变。为了使光线在两点之间传播的时间最短,我们应该使光线所走的路径最短。

θi = θr
入射角等于反射角

1. 光线的总路径长度由下式给出

2. 利用勾股定理欧几里得几何中,我们看到

and

3. 当我们将 d1 和 d2 的两个值代入上面的公式,我们得到

4. 为了使光线传播的路径最短,我们对 L 求关于 x 的一阶导数

5. 将两边设为相等。

6. 现在我们可以看出,左边不过是,而右边意味着

7. 对等式两边取反正弦,我们发现入射角等于反射角

斯涅尔定律推导

[编辑 | 编辑来源]

利用费马原理推导斯涅尔定律非常简单。 斯涅尔定律可以使用基础微积分三角学推导出。斯涅尔定律是对上述情况的推广,它不要求介质在各个地方都相同。

斯涅尔定律将 n1、θ1 和 n2、θ2 联系起来。

为了标记光在不同介质中的速度,使用名为 n1 和 n2 的折射率。

这里 是真空中的光速,因为所有材料都会减慢光线通过时的速度。

1. 行程时间等于行程距离除以速度。

2. 使用来自欧几里得几何勾股定理,我们看到

3. 将此结果代入公式 (1) 中,我们得到

4. 为了最小化传输时间,我们对变量 求导,并将其设为零

5. 仔细检查上面的等式后,我们发现它不过是

6. 这导致

7. 将 代入 代入 ,我们得到

8. 乘以 给我们最终结果

华夏公益教科书