d y d x + p ( x ) y = q ( x ) {\displaystyle {dy \over dx}+p(x)y=q(x)}
y ( x ) = ∫ u ( x ) q ( x ) d x + C u ( x ) {\displaystyle y(x)={\int u(x)q(x)dx+C \over u(x)}} , 其中
d y d x = g ( x ) h ( y ) {\displaystyle {dy \over dx}=g(x)h(y)}
重新整理以得到 d y h ( y ) = g ( x ) d x {\displaystyle {dy \over h(y)}=g(x)dx} ,并积分
d y d x + p ( x ) y = q ( x ) y n {\displaystyle {dy \over dx}+p(x)y=q(x)y^{n}}
将 v = y 1 − n {\displaystyle v=y^{1-n}}
M ( x , y ) d x + N ( x , y ) d y = 0 {\displaystyle M(x,y)dx+N(x,y)dy=0} , 其中 ∂ M ∂ y = ∂ N ∂ x {\displaystyle {\partial M \over \partial y}={\partial N \over \partial x}}
解的形式为 F ( x , y ) = C {\displaystyle F(x,y)=C} , 其中C为常数,并且 F x = M {\displaystyle F_{x}=M} 和 F y = N {\displaystyle F_{y}=N}
设 y ′ = f ( x , y ) , y ( 0 ) = y 0 {\displaystyle y'=f(x,y),y(0)=y_{0}}
步长为 h {\displaystyle h} 的欧拉方法由下式给出
y n + 1 = y n + h f ( x n , y n ) {\displaystyle y_{n+1}=y_{n}+hf(x_{n},y_{n})} .
步长为 h {\displaystyle h} 的改进的欧拉方法由下式给出
y n + 1 = y n + h 2 [ f ( x n , y n ) + f ( x n + 1 , y ¯ n + 1 ) ] , y ¯ n + 1 = y n + h f ( x n , y n ) {\displaystyle y_{n+1}=y_{n}+{\frac {h}{2}}\left[f(x_{n},y_{n})+f(x_{n+1},{\bar {y}}_{n+1})\right],{\bar {y}}_{n+1}=y_{n}+hf(x_{n},y_{n})} .
对于步长 h {\displaystyle h} ,
y n + 1 = y n + h 6 [ k 1 + 2 k 2 + 2 k 3 + k 4 ] {\displaystyle y_{n+1}=y_{n}+{\frac {h}{6}}\left[k_{1}+2k_{2}+2k_{3}+k_{4}\right]} ,其中
← 一些有用的定义 · 二阶齐次常微分方程 →