严格递增
a 1 < a 2 1 2 < 2 3 3 < 4 {\displaystyle {\begin{aligned}a_{1}&<a_{2}\\{\frac {1}{2}}&<{\frac {2}{3}}\\3&<4\end{aligned}}}
a n < a n + 1 n n + 1 < n + 1 n + 2 n ( n + 2 ) < ( n + 1 ) ( n + 1 ) n 2 + 2 n < n 2 + 2 n + 1 0 < 1 {\displaystyle {\begin{aligned}a_{n}&<a_{n+1}\\{\frac {n}{n+1}}&<{\frac {n+1}{n+2}}\\n(n+2)&<(n+1)(n+1)\\n^{2}+2n&<n^{2}+2n+1\\0&<1\\\end{aligned}}}
对于问题 2,我们看到 supx_n = 1,因为 n/(n+1) 接近 1。