概率密度 ρ ( t , r ) = | ψ ( t , r ) | 2 {\displaystyle \rho (t,\mathbf {r} )=|\psi (t,\mathbf {r} )|^{2}} (在固定位置 r {\displaystyle \mathbf {r} } )随时间的变化率由以下公式给出:
∂ ρ ∂ t = ψ ∗ ∂ ψ ∂ t + ψ ∂ ψ ∗ ∂ t . {\displaystyle {\frac {\partial \rho }{\partial t}}=\psi ^{*}{\frac {\partial \psi }{\partial t}}+\psi {\frac {\partial \psi ^{*}}{\partial t}}.}
借助薛定谔方程及其复共轭:
i ℏ ∂ ψ ∂ t = 1 2 m ( ℏ i ∂ ∂ r − A ) ⋅ ( ℏ i ∂ ∂ r − A ) ψ + V ψ , {\displaystyle i\hbar {\frac {\partial \psi }{\partial t}}={\frac {1}{2m}}\left({\frac {\hbar }{i}}{\frac {\partial }{\partial \mathbf {r} }}-\mathbf {A} \right)\cdot \left({\frac {\hbar }{i}}{\frac {\partial }{\partial \mathbf {r} }}-\mathbf {A} \right)\psi +V\psi ,}
ℏ i ∂ ψ ∗ ∂ t = 1 2 m ( i ℏ ∂ ∂ r − A ) ⋅ ( i ℏ ∂ ∂ r − A ) ψ ∗ + V ψ ∗ , {\displaystyle {\hbar \over i}{\partial \psi ^{*} \over \partial t}={\frac {1}{2m}}\left(i\hbar {\frac {\partial }{\partial \mathbf {r} }}-\mathbf {A} \right)\cdot \left(i\hbar {\frac {\partial }{\partial \mathbf {r} }}-\mathbf {A} \right)\psi ^{*}+V\psi ^{*},}
我们得到:
∂ ρ ∂ t = − i ℏ ψ ∗ [ 1 2 m ( ℏ i ∂ ∂ r − A ) ⋅ ( ℏ i ∂ ∂ r − A ) ψ + V ψ ] {\displaystyle {\frac {\partial \rho }{\partial t}}=-{\frac {i}{\hbar }}\psi ^{*}\left[{\frac {1}{2m}}\left({\frac {\hbar }{i}}{\frac {\partial }{\partial \mathbf {r} }}-\mathbf {A} \right)\cdot \left({\frac {\hbar }{i}}{\frac {\partial }{\partial \mathbf {r} }}-\mathbf {A} \right)\psi +V\psi \right]}
+ i ℏ ψ [ 1 2 m ( i ℏ ∂ ∂ r − A ) ⋅ ( i ℏ ∂ ∂ r − A ) ψ ∗ + V ψ ∗ ] . {\displaystyle +{\frac {i}{\hbar }}\psi \left[{\frac {1}{2m}}\left(i\hbar {\frac {\partial }{\partial \mathbf {r} }}-\mathbf {A} \right)\cdot \left(i\hbar {\frac {\partial }{\partial \mathbf {r} }}-\mathbf {A} \right)\psi ^{*}+V\psi ^{*}\right].}
包含 V {\displaystyle V} 的项相互抵消,剩下
∂ ρ ∂ t = − i 2 m ℏ [ ψ ∗ ( i ℏ ∂ ∂ r + A ) ⋅ ( i ℏ ∂ ∂ r + A ) ψ − ψ ( i ℏ ∂ ∂ r − A ) ⋅ ( i ℏ ∂ ∂ r − A ) ψ ∗ ] {\displaystyle {\frac {\partial \rho }{\partial t}}=-{\frac {i}{2m\hbar }}\left[\psi ^{*}\left(i\hbar {\frac {\partial }{\partial \mathbf {r} }}+\mathbf {A} \right)\cdot \left(i\hbar {\frac {\partial }{\partial \mathbf {r} }}+\mathbf {A} \right)\psi -\psi \left(i\hbar {\frac {\partial }{\partial \mathbf {r} }}-\mathbf {A} \right)\cdot \left(i\hbar {\frac {\partial }{\partial \mathbf {r} }}-\mathbf {A} \right)\psi ^{*}\right]}
= ⋯ = − ℏ 2 m i ( ∂ 2 ψ ∂ r 2 ψ ∗ − ψ ∂ 2 ψ ∗ ∂ r 2 ) + 1 m ( ψ ψ ∗ ∂ ∂ r ⋅ A + A ∂ ψ ∂ r ψ ∗ + A ψ ∂ ψ ∗ ∂ r ) . {\displaystyle =\dots =-{\frac {\hbar }{2mi}}\left({\frac {\partial ^{2}\psi }{\partial \mathbf {r} ^{2}}}\psi ^{*}-\psi {\frac {\partial ^{2}\psi ^{*}}{\partial \mathbf {r} ^{2}}}\right)+{\frac {1}{m}}\left(\psi \psi ^{*}{\frac {\partial }{\partial \mathbf {r} }}\cdot \mathbf {A} +\mathbf {A} {\frac {\partial \psi }{\partial \mathbf {r} }}\psi ^{*}+\mathbf {A} \psi {\frac {\partial \psi ^{*}}{\partial \mathbf {r} }}\right).}
接下来,我们计算 j = ℏ 2 m i ( ψ ∗ ∂ ψ ∂ r − ∂ ψ ∗ ∂ r ψ ) − 1 m A ψ ∗ ψ {\displaystyle \mathbf {j} ={\frac {\hbar }{2mi}}\left(\psi ^{*}{\frac {\partial \psi }{\partial \mathbf {r} }}-{\frac {\partial \psi ^{*}}{\partial \mathbf {r} }}\psi \right)-{\frac {1}{m}}\mathbf {A} \psi ^{*}\psi } 的散度。
∂ ∂ r ⋅ j = ℏ 2 m i ( ∂ 2 ψ ∂ r 2 ψ ∗ − ψ ∂ 2 ψ ∗ ∂ r 2 ) − 1 m ( ψ ψ ∗ ∂ ∂ r ⋅ A + A ∂ ψ ∂ r ψ ∗ + A ψ ∂ ψ ∗ ∂ r ) . {\displaystyle {\frac {\partial }{\partial \mathbf {r} }}\cdot \mathbf {j} ={\frac {\hbar }{2mi}}\left({\frac {\partial ^{2}\psi }{\partial \mathbf {r} ^{2}}}\psi ^{*}-\psi {\frac {\partial ^{2}\psi ^{*}}{\partial \mathbf {r} ^{2}}}\right)-{\frac {1}{m}}\left(\psi \psi ^{*}{\frac {\partial }{\partial \mathbf {r} }}\cdot \mathbf {A} +\mathbf {A} {\frac {\partial \psi }{\partial \mathbf {r} }}\psi ^{*}+\mathbf {A} \psi {\frac {\partial \psi ^{*}}{\partial \mathbf {r} }}\right).}
结果
∂ ρ ∂ t = − ∂ ∂ r ⋅ j . {\displaystyle {\frac {\partial \rho }{\partial t}}=-{\frac {\partial }{\partial \mathbf {r} }}\cdot \mathbf {j} .}
在空间区域 R {\displaystyle R} 上积分,边界 ∂ R : {\displaystyle \partial R:} 不变。
∂ ∂ t ∫ R ρ d 3 r = − ∫ R ∂ ∂ r ⋅ j d 3 r . {\displaystyle {\partial \over \partial t}\int _{R}\rho \,d^{3}r=-\int _{R}{\partial \over \partial \mathbf {r} }\cdot \mathbf {j} \,d^{3}r.}
根据高斯定律 , j {\displaystyle \mathbf {j} } 穿过 ∂ R {\displaystyle \partial R} 的外向通量等于 j {\displaystyle \mathbf {j} } 在 R : {\displaystyle R:} 上的 散度 积分。
∮ ∂ R j ⋅ d Σ = ∫ R ∂ ∂ r ⋅ j d 3 r . {\displaystyle \oint _{\partial R}\mathbf {j} \cdot d\Sigma =\int _{R}{\partial \over \partial \mathbf {r} }\cdot \mathbf {j} \,d^{3}r.}
因此我们有
∂ ∂ t ∫ R ρ d 3 r = − ∮ ∂ R j ⋅ d Σ . {\displaystyle {\partial \over \partial t}\int _{R}\rho \,d^{3}r=-\oint _{\partial R}\mathbf {j} \cdot d\Sigma .}
如果 ρ {\displaystyle \rho } 是某种物质的连续密度(单位体积的物质量)并且 j {\displaystyle \mathbf {j} } 是它的通量(单位面积单位时间的物质量),那么在等式左边,我们有物质在 R {\displaystyle R} 内部增加的速率,而在等式右边,我们有物质穿过 R {\displaystyle R} 表面的速率。因此,如果一些物质从 A 地点移动到 B 地点,它将穿过包含 A 或 B 的任何区域的边界。这就是为什么这个方程被称为 连续性方程 。
然而,在量子世界中,不存在连续分布和/或连续移动的物质。 ρ {\displaystyle \rho } 和 j , {\displaystyle \mathbf {j} ,} 分别只是在形式上的意义上是密度(单位体积的某种东西)和通量(单位面积单位时间的某种东西)。如果 ψ {\displaystyle \psi } 是与粒子相关的波函数,那么积分 ∫ R ρ d 3 r = ∫ R | ψ | 2 d 3 r {\displaystyle \int _{R}\rho \,d^{3}r=\int _{R}|\psi |^{2}\,d^{3}r} 给出了在 R {\displaystyle R} 中找到粒子的概率, *如果进行了适当的测量*,这个方程告诉我们:如果在 R {\displaystyle R} 内部找到粒子的概率(作为测量时间函数)增加,那么在 R {\displaystyle R} 外部找到粒子的概率(作为相同时间函数)将减少相同数量。(如果 ψ {\displaystyle \psi } 与具有 n {\displaystyle n} 个自由度的系统相关,而 R {\displaystyle R} 是该系统配置空间中的一个区域,也是如此)。这有时用“概率(局部)守恒”来表达。当你听到这句话时,请记住,某件事在给定时间和地点发生的概率并不是存在于那个地方或时间的东西。