定义 7.1:
令
为
-维实向量空间。
被称为 李代数 当且仅当它具有一个函数
![{\displaystyle [\cdot ,\cdot ]:L\times L\to L}](https://wikimedia.org/api/rest_v1/media/math/render/svg/65ed0dcd16a5bcb57a3b06e7321fb2a9b5ddcaed)
使得对于所有
和
这三个规则
和
(双线性)
(反对称性)
(雅可比恒等式)
成立。
定理 6.4:如果
是
类向量场在
上,那么
是
类向量场在
上(即
确实映射到
)。
证明:
1. 我们证明对于每个
,
。令
且
。
1.1 我们证明线性性
![{\displaystyle {\begin{aligned}{[\mathbf {V} ,\mathbf {W} ]}(p)(\varphi +c\vartheta )&=\mathbf {V} (p)(\mathbf {W} (\varphi +c\vartheta ))-\mathbf {W} (p)(\mathbf {V} (\varphi +c\vartheta ))\\&=\mathbf {V} (p)(\mathbf {W} \varphi +c\mathbf {W} \vartheta )-\mathbf {W} (p)(\mathbf {V} \varphi +c\mathbf {V} \vartheta )\\&=\mathbf {V} (p)(\mathbf {W} \varphi )-\mathbf {W} (p)(\mathbf {V} \varphi )+c(\mathbf {V} (p)(\mathbf {W} \vartheta )-\mathbf {W} (p)(\mathbf {V} \vartheta ))\\&=[\mathbf {V} ,\mathbf {W} ](p)(\varphi )+c[\mathbf {V} ,\mathbf {W} ](p)(\vartheta )\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/646d4d61a3421240fb6b14546af7f0f538d7fbdc)
1.2 我们证明乘积规则
![{\displaystyle {\begin{aligned}{[\mathbf {V} ,\mathbf {W} ]}(p)(\varphi \vartheta )&=\mathbf {V} (p)(\mathbf {W} (\varphi \vartheta ))-\mathbf {W} (p)(\mathbf {V} (\varphi \vartheta ))\\&=\mathbf {V} (p)(\varphi \mathbf {W} \vartheta +\vartheta \mathbf {W} \varphi )-\mathbf {W} (p)(\varphi \mathbf {V} \vartheta +\vartheta \mathbf {V} \varphi )\\&=\mathbf {V} (p)(\varphi \mathbf {W} \vartheta )+\mathbf {V} (p)(\vartheta \mathbf {W} \varphi )-\mathbf {W} (p)(\varphi \mathbf {V} \vartheta )-\mathbf {W} (p)(\vartheta \mathbf {V} \varphi )\\&=\varphi (p)\mathbf {V} (p)(\mathbf {W} \vartheta )+\overbrace {\mathbf {(} Y\vartheta )(p)} ^{=Y(p)(\vartheta )}\mathbf {V} (p)(\varphi )+\vartheta (p)\mathbf {V} (p)(\mathbf {W} \varphi )+\overbrace {\mathbf {(} Y\varphi )(p)} ^{=Y(p)(\varphi )}\mathbf {V} (p)(\vartheta )\\&~~~~-\varphi (p)\mathbf {W} (p)(\mathbf {V} \vartheta )-\overbrace {\mathbf {(} X\vartheta )(p)} ^{=X(p)(\vartheta )}\mathbf {W} (p)(\varphi )-\vartheta (p)\mathbf {W} (p)(\mathbf {V} \varphi )-\overbrace {\mathbf {(} X\varphi )(p)} ^{=X(p)(\varphi )}\mathbf {W} (p)(\vartheta )\\&=\varphi (p)\mathbf {V} (p)(\mathbf {W} \vartheta )-\varphi (p)\mathbf {W} (p)(\mathbf {V} \vartheta )+\vartheta (p)\mathbf {V} (p)(\mathbf {W} \varphi )-\vartheta (p)\mathbf {W} (p)(\mathbf {V} \varphi )\\&=\varphi (p)[\mathbf {V} ,\mathbf {W} ](p)(\vartheta )+\vartheta (p)[\mathbf {V} ,\mathbf {W} ](p)(\varphi )\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1cf5af860ab89b081ad4ad4e950cf527db80b6e9)
2. 我们证明
是
类的可微函数。
令
是任意函数。由于
是
类向量场,所以
和
都属于
。但由于
是
类向量场,所以
和
都属于
。但是,两个可微函数的和仍然可微(这就是定理 2.? 所说的),因此
属于
,由于
是任意的,所以
是
类可微的。 
定理 6.5:
如果
是一个流形,并且
是向量场的李括号,那么
和
共同构成一个李代数。
证明:
1. 首先我们注意到,根据定义 5.?,
是一个向量空间(这在练习 5.? 中已经讨论过了)。
2. 其次,我们证明对于向量李括号,定义 6.1 中的三个计算规则都满足。设
以及
.
2.1 我们证明双线性。对于所有
和
,我们有
![{\displaystyle {\begin{aligned}{[\mathbf {V} ,\mathbf {W} +c\mathbf {U} ]}(p)(\varphi )&=\mathbf {V} (p)((\mathbf {W} +c\mathbf {U} )\varphi )-(\mathbf {W} +c\mathbf {U} )(p)(\mathbf {V} \varphi )\\&=\mathbf {V} (p)(\mathbf {W} \varphi +c\mathbf {U} \varphi )-\mathbf {W} (p)(\mathbf {V} \varphi )-c\mathbf {U} (p)(\mathbf {V} \varphi )\\&=\mathbf {V} (p)(\mathbf {W} \varphi )-\mathbf {W} (p)(\mathbf {V} \varphi )+c\mathbf {V} (p)(\mathbf {U} \varphi )-c\mathbf {U} (p)(\mathbf {V} \varphi )\\&=[\mathbf {V} ,\mathbf {W} ](p)(\varphi )+c[\mathbf {V} ,\mathbf {U} ](p)(\varphi )\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/42a62381b287abbc3f647290a9bca8a4cfd1e8b0)
因此,由于
和
是任意的,
![{\displaystyle [\mathbf {V} ,\mathbf {W} +c\mathbf {U} ]=[\mathbf {V} ,\mathbf {W} ]+c[\mathbf {V} ,\mathbf {U} ]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a6d251cc931149bdd8a168a939a174858cbe2f09)
类似地(参见习题 1),可以证明
![{\displaystyle [\mathbf {V} +c\mathbf {W} ,\mathbf {U} ]=[\mathbf {V} ,\mathbf {U} ]+c[\mathbf {W} ,\mathbf {U} ]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2daafcb0712d4ec407948a6e69d109bb120af9e2)
2.2 我们证明反对称性。对于所有
和 
(\varphi )=\mathbf {V} (p)(\mathbf {W} \varphi )-\mathbf {W} (p)(\mathbf {V} \varphi )=-(\mathbf {W} (p)(\mathbf {V} \varphi )-\mathbf {V} (p)(\mathbf {W} \varphi ))=-[\mathbf {W} ,\mathbf {V} ](p)(\varphi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3d8a8dde36f29d7a13feccdb82ab75697437f5ff)
2.3 我们证明雅可比恒等式。对于所有
和 
![{\displaystyle {\begin{aligned}{[\mathbf {V} ,[\mathbf {W} ,\mathbf {U} ]]}(p)(\varphi )+[\mathbf {U} ,[\mathbf {V} ,\mathbf {W} ]](p)(\varphi )+[\mathbf {W} ,[\mathbf {U} ,\mathbf {V} ]](p)(\varphi )&=\mathbf {V} (p)([\mathbf {W} ,\mathbf {U} ]\varphi )-[\mathbf {W} ,\mathbf {U} ](p)(\mathbf {V} \varphi )\\&~~~~+\mathbf {U} (p)([\mathbf {V} ,\mathbf {W} ]\varphi )-[\mathbf {V} ,\mathbf {W} ](p)(\mathbf {U} \varphi )\\&~~~~+\mathbf {W} (p)([\mathbf {U} ,\mathbf {V} ]\varphi )-[\mathbf {U} ,\mathbf {V} ](p)(\mathbf {W} \varphi )\\&=\mathbf {V} (p)(\mathbf {W} (\mathbf {U} \varphi )-\mathbf {U} (\mathbf {W} \varphi ))-\mathbf {W} (p)(\mathbf {U} (\mathbf {V} \varphi ))+\mathbf {U} (p)(\mathbf {W} (\mathbf {V} \varphi ))\\&~~~~+\mathbf {U} (p)(\mathbf {V} (\mathbf {W} \varphi )-\mathbf {W} (\mathbf {V} \varphi ))-\mathbf {V} (p)(\mathbf {W} (\mathbf {U} \varphi ))+\mathbf {W} (p)(\mathbf {V} (\mathbf {U} \varphi ))\\&~~~~+\mathbf {W} (p)(\mathbf {U} (\mathbf {V} \varphi )-\mathbf {V} (\mathbf {U} \varphi ))-\mathbf {U} (p)(\mathbf {V} (\mathbf {W} \varphi ))+\mathbf {V} (p)(\mathbf {U} (\mathbf {W} \varphi ))\\&=0\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f4f1aa3daa878ce7bb96e90f0f6a839de2f11f94)
,其中最后一个等式来自
和
的线性性。