离散数学/集合论/答案
外观
1
- (a) 是;字母数字字符是A…Z、a…z和0…9
- (b) 否;“高”没有明确定义
- (c) 是;集合为{12.5}
- (d) 是;空集
- (e) 否;“好”没有明确定义
2
- (a) T
- (b) F
- (c) T
- (d) F;A是子集U(我们在下一节中会遇到)
- (e) F;{偶数}是指所有偶数的集合,而不仅仅是2到10之间的偶数
3
- (a) {4, 33, √9}
- (b) {4, -5, 33, √9}
- (c) {4, 2/3, -2.5, -5, 33, √9}
- (d) {√2, π}
4
- (a) F
- (b) T
- (c) F
- (d) T
5个例子可能包括
- (a) {伦敦,巴黎,罗马,…}
- (b) {1, 3, 5, 7, …},但不包括-3或-1
- (c) {5, -5}
- (d) {3, 27, 243, …}
返回 集合论练习1
1
在A中? | 在B中? | 在C中? | 区域 |
---|---|---|---|
Y | Y | Y | vi |
Y | Y | N | iii |
Y | N | Y | v |
Y | N | N | ii |
N | Y | Y | vii |
N | Y | N | iv |
N | N | Y | viii |
N | N | N | i |
2
- 它们都相等。
3
- (a) True (b) False (c) True
4
- (a)
- (b) P ⊂ Q; R ⊂Q
- (c) False
5
- (a)
- (b)
- (c)
- (d)
返回 集合论练习2
1
(a) | (b) |
A ∩ B = {6, 8} A ∪ C = {2, 3, 4, 6, 7, 8, 10} A ′ = {1, 3, 5, 7, 9} B ′ = {2, 4, 5, 9, 10} B ∩ A ′ = {1, 3, 7} B ∩ C ′ = {1, 6, 8} A – B = {2, 4, 10} A Δ B = {1, 2, 3, 4, 7, 10} |
- (c)
- C - B =ø
2
- (a) F
- (b) F
- (c) T
3
- (a) P ⊆ Q
- (b) Q ⊆ P
4
(a) | (b) |
(c) | (d) |
(e) | (f) |
5
- (a) B ′
- (b) A ∩ B ′
- (c) (A ∪ B) ∩ (A ∩ B) ′ or (A ∩ B ′) ∪ (A ′ ∩ B)
- (d) (A ∩ B) ∪ (A ′ ∩ B ′) or (A ∪ B) ′ ∪ (A ∩ B) or …?
6
- (a) 区域(b)代表A – B。所以A – B = A ∩ B ′
- (b) 区域(c)代表A Δ B。
- 所以A Δ B = (A ∩ B) ∪ (A ′ ∩ B ′) or (A ∪ B) ′ ∪ (A ∩ B)
返回 集合论练习3
1
- (a) P(A) = {ø, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2,4}, {3, 4}, {2, 3, 4}, {1, 3, 4}, {1, 2, 4}, {1, 2, 3}, {1, 2, 3, 4}}
- | P(A) | = 16
- (b) 32
- (c) 210 = 1024
2
使用定律 | ||||
(a) | B ∪ (ø∩ A) | = B ∪ (A ∩ø) | 交换律 | |
= B ∪ø | 恒等律 | |||
= B | 恒等律 | |||
(b) | (A ' ∩ U) ' | = (A' ) ' ∪ U' | 德摩根定律 | |
= A ∪ U' | 幂等律 | |||
= A ∪ø | 补律 | |||
= A | 恒等律 | |||
(c) | (C ∪ A) ∩ (B ∪ A) | = (A ∪ C) ∩ (B ∪ A) | 交换律 | |
= (A ∪ C) ∩ (A ∪ B) | 交换律 | |||
= ((A ∪ C) ∩ B) ∪ ((A ∪ C) ∩ A) | 分配律 | |||
= ((A ∩ B) ∪ (C ∩ B)) ∪ (A ∪ (C ∩ A)) | 分配律 | |||
= ((B ∩ C) ∪ (A ∩ B)) ∪ (A ∪ (A ∩ C)) | 交换律 (2x) | |||
= ((B ∩ C) ∪ (A ∩ B)) ∪ ((A ∩ U) ∪ (A ∩ C)) | 恒等律 | |||
= ((B ∩ C) ∪ (A ∩ B)) ∪ (A ∩ (U ∪ C)) | 分配律 | |||
= ((B ∩ C) ∪ (A ∩ B)) ∪ (A ∩ U) | 恒等律 | |||
= ((B ∩ C) ∪ (A ∩ B)) ∪ A | 恒等律 | |||
= (B ∩ C) ∪ ((A ∩ B) ∪ A)) | 结合律 | |||
= (B ∩ C) ∪ ((A ∩ B) ∪ (A ∩ U)) | 恒等律 | |||
= (B ∩ C) ∪ (A ∩ (B ∪ U)) | 分配律 | |||
= (B ∩ C) ∪ (A ∩ U) | 恒等律 | |||
= (B ∩ C) ∪ A | 恒等律 | |||
= A ∪ (B ∩ C) | 交换律 | |||
(d) | (A ∩ B) ∪ (A ∩ B ' ) | = A ∩ (B ∪ B ' ) | 分配律 | |
= A ∩ U | 补律 | |||
= A | 恒等律 | |||
(e) | (A ∩ B) ∪ (A ∪ B ' ) ' | = (A ∩ B) ∪ (A ' ∩ (B ' ) ' ) | 德摩根定律 | |
= (A ∩ B) ∪ (A ' ∩ B) | 幂等律 | |||
= (B ∩ A) ∪ (B ∩ A ' ) | 交换律 (× 2) | |||
= B ∩ (A ∪ A ' ) | 分配律 | |||
= B ∩ U | 补律 | |||
= B | 恒等律 | |||
(f) | A ∩ (A ∪ B) | = (A ∪ø) ∩ (A ∪ B) | 恒等律 | |
= A ∪ (ø∩ B) | 分配律 | |||
= A ∩ (B ∩ø) | 交换律 | |||
= A ∪ø | 恒等律 | |||
= A | 恒等律 |
返回 集合论练习4
1
- (a) X × Y = {(a, a), (a, b), (a, e), (a, f), (c, a), (c, b), (c, e), (c, f)}
- (b) Y × X = {(a, a), (a, c), (b, a), (b, c), (e, a), (e, c), (f, a), (f, c)}
- (c) X × X = {(a, a), (a, c), (c, a), (c, c)}
- (d) 它们相等:A = B
2
- (a) (b, 2), (b, 4), (c, 1), (c, 5), (e, 1), (e, 5), (f, 2), (f, 4)
- (b) P = C × R
- (c) ((G × R) ∪ (C × T)) - (G × T)
3
- V = {pqr | (p, q, r) ∈ L × (L ∪ D) × (L ∪ D)}
4
- 阴影区域在每种情况下都相同,因此命题似乎为真。
返回 集合论练习5