跳转到内容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
微积分/弧长/解答
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外观
移至侧边栏
隐藏
来自维基教科书,自由的教科书
<
微积分
|
弧长
1. 求曲线
y
=
x
3
2
{\displaystyle y=x^{\frac {3}{2}}}
从
x
=
0
{\displaystyle x=0}
到
x
=
1
{\displaystyle x=1}
的长度。
:
s
=
∫
0
1
1
+
(
d
d
x
(
x
3
2
)
)
2
d
x
=
∫
0
1
1
+
(
3
2
x
)
2
d
x
=
∫
0
1
1
+
9
4
x
d
x
{\displaystyle {\begin{aligned}s&=\int \limits _{0}^{1}{\sqrt {1+\left({\frac {d}{dx}}{\big (}x^{\frac {3}{2}}{\big )}\right)^{2}}}dx\\&=\int \limits _{0}^{1}{\sqrt {1+\left({\tfrac {3}{2}}{\sqrt {x}}\right)^{2}}}dx\\&=\int \limits _{0}^{1}{\sqrt {1+{\tfrac {9}{4}}x}}\,dx\end{aligned}}}
令
u
=
1
+
9
4
x
;
d
u
=
9
4
d
x
;
d
x
=
4
9
d
u
{\displaystyle u=1+{\frac {9}{4}}x;\quad du={\frac {9}{4}}dx;\quad dx={\frac {4}{9}}du}
则
s
=
∫
u
(
0
)
u
(
1
)
4
9
u
d
u
=
4
9
⋅
2
3
[
u
3
2
]
u
(
0
)
u
(
1
)
=
8
27
[
(
1
+
9
4
x
)
3
2
]
0
1
=
8
27
[
(
1
+
9
4
)
3
2
−
1
]
=
13
13
−
8
27
{\displaystyle {\begin{aligned}s&=\int \limits _{u(0)}^{u(1)}{\frac {4}{9}}{\sqrt {u}}\,du\\&={\frac {4}{9}}\cdot {\frac {2}{3}}{\Big [}u^{\frac {3}{2}}{\Big ]}_{u(0)}^{u(1)}\\&={\frac {8}{27}}\left[\left(1+{\frac {9}{4}}x\right)^{\frac {3}{2}}\right]_{0}^{1}\\&={\frac {8}{27}}\left[\left(1+{\frac {9}{4}}\right)^{\frac {3}{2}}-1\right]\\&=\mathbf {\frac {13{\sqrt {13}}-8}{27}} \end{aligned}}}
:
s
=
∫
0
1
1
+
(
d
d
x
(
x
3
2
)
)
2
d
x
=
∫
0
1
1
+
(
3
2
x
)
2
d
x
=
∫
0
1
1
+
9
4
x
d
x
{\displaystyle {\begin{aligned}s&=\int \limits _{0}^{1}{\sqrt {1+\left({\frac {d}{dx}}{\big (}x^{\frac {3}{2}}{\big )}\right)^{2}}}dx\\&=\int \limits _{0}^{1}{\sqrt {1+\left({\tfrac {3}{2}}{\sqrt {x}}\right)^{2}}}dx\\&=\int \limits _{0}^{1}{\sqrt {1+{\tfrac {9}{4}}x}}\,dx\end{aligned}}}
令
u
=
1
+
9
4
x
;
d
u
=
9
4
d
x
;
d
x
=
4
9
d
u
{\displaystyle u=1+{\frac {9}{4}}x;\quad du={\frac {9}{4}}dx;\quad dx={\frac {4}{9}}du}
则
s
=
∫
u
(
0
)
u
(
1
)
4
9
u
d
u
=
4
9
⋅
2
3
[
u
3
2
]
u
(
0
)
u
(
1
)
=
8
27
[
(
1
+
9
4
x
)
3
2
]
0
1
=
8
27
[
(
1
+
9
4
)
3
2
−
1
]
=
13
13
−
8
27
{\displaystyle {\begin{aligned}s&=\int \limits _{u(0)}^{u(1)}{\frac {4}{9}}{\sqrt {u}}\,du\\&={\frac {4}{9}}\cdot {\frac {2}{3}}{\Big [}u^{\frac {3}{2}}{\Big ]}_{u(0)}^{u(1)}\\&={\frac {8}{27}}\left[\left(1+{\frac {9}{4}}x\right)^{\frac {3}{2}}\right]_{0}^{1}\\&={\frac {8}{27}}\left[\left(1+{\frac {9}{4}}\right)^{\frac {3}{2}}-1\right]\\&=\mathbf {\frac {13{\sqrt {13}}-8}{27}} \end{aligned}}}
2. 求曲线
y
=
e
x
+
e
−
x
2
{\displaystyle y={\frac {e^{x}+e^{-x}}{2}}}
从
x
=
0
{\displaystyle x=0}
到
x
=
1
{\displaystyle x=1}
的长度。
:
s
=
∫
0
1
1
+
(
d
d
x
(
e
x
+
e
−
x
2
)
)
2
d
x
=
∫
0
1
1
+
(
e
x
−
e
−
x
2
)
2
d
x
=
∫
0
1
1
+
e
2
x
−
2
+
e
−
2
x
4
d
x
=
∫
0
1
e
2
x
+
2
+
e
−
2
x
4
d
x
=
∫
0
1
(
e
x
+
e
−
x
2
)
2
d
x
=
∫
0
1
e
x
+
e
−
x
2
d
x
=
e
x
−
e
−
x
2
|
0
1
=
e
−
1
e
2
{\displaystyle {\begin{aligned}s&=\int \limits _{0}^{1}{\sqrt {1+\left({\frac {d}{dx}}\left({\frac {e^{x}+e^{-x}}{2}}\right)\right)^{2}}}dx\\&=\int \limits _{0}^{1}{\sqrt {1+\left({\frac {e^{x}-e^{-x}}{2}}\right)^{2}}}dx\\&=\int \limits _{0}^{1}{\sqrt {1+{\frac {e^{2x}-2+e^{-2x}}{4}}}}dx\\&=\int \limits _{0}^{1}{\sqrt {\frac {e^{2x}+2+e^{-2x}}{4}}}dx\\&=\int \limits _{0}^{1}{\sqrt {\left({\frac {e^{x}+e^{-x}}{2}}\right)^{2}}}dx\\&=\int \limits _{0}^{1}{\frac {e^{x}+e^{-x}}{2}}dx\\&={\frac {e^{x}-e^{-x}}{2}}{\bigg |}_{0}^{1}\\&=\mathbf {\frac {e-{\frac {1}{e}}}{2}} \end{aligned}}}
:
s
=
∫
0
1
1
+
(
d
d
x
(
e
x
+
e
−
x
2
)
)
2
d
x
=
∫
0
1
1
+
(
e
x
−
e
−
x
2
)
2
d
x
=
∫
0
1
1
+
e
2
x
−
2
+
e
−
2
x
4
d
x
=
∫
0
1
e
2
x
+
2
+
e
−
2
x
4
d
x
=
∫
0
1
(
e
x
+
e
−
x
2
)
2
d
x
=
∫
0
1
e
x
+
e
−
x
2
d
x
=
e
x
−
e
−
x
2
|
0
1
=
e
−
1
e
2
{\displaystyle {\begin{aligned}s&=\int \limits _{0}^{1}{\sqrt {1+\left({\frac {d}{dx}}\left({\frac {e^{x}+e^{-x}}{2}}\right)\right)^{2}}}dx\\&=\int \limits _{0}^{1}{\sqrt {1+\left({\frac {e^{x}-e^{-x}}{2}}\right)^{2}}}dx\\&=\int \limits _{0}^{1}{\sqrt {1+{\frac {e^{2x}-2+e^{-2x}}{4}}}}dx\\&=\int \limits _{0}^{1}{\sqrt {\frac {e^{2x}+2+e^{-2x}}{4}}}dx\\&=\int \limits _{0}^{1}{\sqrt {\left({\frac {e^{x}+e^{-x}}{2}}\right)^{2}}}dx\\&=\int \limits _{0}^{1}{\frac {e^{x}+e^{-x}}{2}}dx\\&={\frac {e^{x}-e^{-x}}{2}}{\bigg |}_{0}^{1}\\&=\mathbf {\frac {e-{\frac {1}{e}}}{2}} \end{aligned}}}
3. 求由参数方程
x
(
t
)
=
R
cos
(
t
)
,
y
(
t
)
=
R
sin
(
t
)
{\displaystyle x(t)=R\cos(t),y(t)=R\sin(t)}
给出的圆的周长,其中
t
∈
[
0
,
2
π
]
{\displaystyle t\in [0,2\pi ]}
。
:
s
=
∫
0
2
π
(
d
d
t
(
R
cos
(
t
)
)
)
2
+
(
d
d
t
(
R
sin
(
t
)
)
)
2
d
t
=
∫
0
2
π
(
−
R
sin
(
t
)
)
2
+
(
R
cos
(
t
)
)
2
d
t
=
∫
0
2
π
R
2
(
sin
2
(
t
)
+
cos
2
(
t
)
)
d
t
=
∫
0
2
π
R
d
t
=
R
⋅
t
|
0
2
π
=
2
π
R
{\displaystyle {\begin{aligned}s&=\int \limits _{0}^{2\pi }{\sqrt {\left({\tfrac {d}{dt}}{\big (}R\cos(t){\big )}\right)^{2}+\left({\tfrac {d}{dt}}{\big (}R\sin(t){\big )}\right)^{2}}}dt\\&=\int \limits _{0}^{2\pi }{\sqrt {{\big (}-R\sin(t){\big )}^{2}+{\big (}R\cos(t){\big )}^{2}}}dt\\&=\int \limits _{0}^{2\pi }{\sqrt {R^{2}{\big (}\sin ^{2}(t)+\cos ^{2}(t){\big )}}}dt\\&=\int \limits _{0}^{2\pi }Rdt\\&=R\cdot t{\Big |}_{0}^{2\pi }\\&=\mathbf {2\pi R} \end{aligned}}}
:
s
=
∫
0
2
π
(
d
d
t
(
R
cos
(
t
)
)
)
2
+
(
d
d
t
(
R
sin
(
t
)
)
)
2
d
t
=
∫
0
2
π
(
−
R
sin
(
t
)
)
2
+
(
R
cos
(
t
)
)
2
d
t
=
∫
0
2
π
R
2
(
sin
2
(
t
)
+
cos
2
(
t
)
)
d
t
=
∫
0
2
π
R
d
t
=
R
⋅
t
|
0
2
π
=
2
π
R
{\displaystyle {\begin{aligned}s&=\int \limits _{0}^{2\pi }{\sqrt {\left({\tfrac {d}{dt}}{\big (}R\cos(t){\big )}\right)^{2}+\left({\tfrac {d}{dt}}{\big (}R\sin(t){\big )}\right)^{2}}}dt\\&=\int \limits _{0}^{2\pi }{\sqrt {{\big (}-R\sin(t){\big )}^{2}+{\big (}R\cos(t){\big )}^{2}}}dt\\&=\int \limits _{0}^{2\pi }{\sqrt {R^{2}{\big (}\sin ^{2}(t)+\cos ^{2}(t){\big )}}}dt\\&=\int \limits _{0}^{2\pi }Rdt\\&=R\cdot t{\Big |}_{0}^{2\pi }\\&=\mathbf {2\pi R} \end{aligned}}}
4. 求由参数方程
x
(
t
)
=
R
(
t
−
sin
(
t
)
)
,
y
(
t
)
=
R
(
1
−
cos
(
t
)
)
{\displaystyle x(t)=R{\big (}t-\sin(t){\big )},y(t)=R{\big (}1-\cos(t){\big )}}
给出的摆线的一段弧的长度,其中
t
∈
[
0
,
2
π
]
{\displaystyle t\in [0,2\pi ]}
。
:
s
=
∫
0
2
π
(
d
d
t
R
(
t
−
sin
(
t
)
)
)
2
+
(
d
d
t
R
(
1
−
cos
(
t
)
)
)
2
d
t
=
∫
0
2
π
(
R
(
1
−
cos
(
t
)
)
)
2
+
(
R
sin
(
t
)
)
2
d
t
=
∫
0
2
π
R
(
1
−
cos
(
t
)
)
2
+
sin
2
(
t
)
d
t
=
∫
0
2
π
R
1
−
2
cos
(
t
)
+
cos
2
(
t
)
+
sin
2
(
t
)
d
t
=
∫
0
2
π
R
2
−
2
cos
(
t
)
d
t
{\displaystyle {\begin{aligned}s&=\int \limits _{0}^{2\pi }{\sqrt {\left({\tfrac {d}{dt}}R(t-\sin(t))\right)^{2}+\left({\tfrac {d}{dt}}R(1-\cos(t))\right)^{2}}}dt\\&=\int \limits _{0}^{2\pi }{\sqrt {{\big (}R(1-\cos(t)){\big )}^{2}+{\big (}R\sin(t){\big )}^{2}}}dt\\&=\int \limits _{0}^{2\pi }R{\sqrt {{\big (}1-\cos(t){\big )}^{2}+\sin ^{2}(t)}}dt\\&=\int \limits _{0}^{2\pi }R{\sqrt {1-2\cos(t)+\cos ^{2}(t)+\sin ^{2}(t)}}dt\\&=\int \limits _{0}^{2\pi }R{\sqrt {2-2\cos(t)}}dt\end{aligned}}}
使用
三角恒等式
sin
2
(
t
2
)
=
1
−
cos
(
t
)
2
{\displaystyle \sin ^{2}\left({\frac {t}{2}}\right)={\frac {1-\cos(t)}{2}}}
,我们有
s
=
∫
0
2
π
R
4
sin
2
(
t
2
)
d
t
=
∫
0
2
π
2
R
sin
(
t
2
)
d
t
=
−
4
R
cos
(
t
2
)
|
0
2
π
=
−
4
R
(
−
1
−
1
)
=
8
R
{\displaystyle {\begin{aligned}s&=\int \limits _{0}^{2\pi }R{\sqrt {4\sin ^{2}\left({\frac {t}{2}}\right)}}dt\\&=\int \limits _{0}^{2\pi }2R\sin \left({\frac {t}{2}}\right)dt\\&=-4R\cos \left({\frac {t}{2}}\right){\Bigg |}_{0}^{2\pi }\\&=-4R(-1-1)\\&=\mathbf {8R} \end{aligned}}}
:
s
=
∫
0
2
π
(
d
d
t
R
(
t
−
sin
(
t
)
)
)
2
+
(
d
d
t
R
(
1
−
cos
(
t
)
)
)
2
d
t
=
∫
0
2
π
(
R
(
1
−
cos
(
t
)
)
)
2
+
(
R
sin
(
t
)
)
2
d
t
=
∫
0
2
π
R
(
1
−
cos
(
t
)
)
2
+
sin
2
(
t
)
d
t
=
∫
0
2
π
R
1
−
2
cos
(
t
)
+
cos
2
(
t
)
+
sin
2
(
t
)
d
t
=
∫
0
2
π
R
2
−
2
cos
(
t
)
d
t
{\displaystyle {\begin{aligned}s&=\int \limits _{0}^{2\pi }{\sqrt {\left({\tfrac {d}{dt}}R(t-\sin(t))\right)^{2}+\left({\tfrac {d}{dt}}R(1-\cos(t))\right)^{2}}}dt\\&=\int \limits _{0}^{2\pi }{\sqrt {{\big (}R(1-\cos(t)){\big )}^{2}+{\big (}R\sin(t){\big )}^{2}}}dt\\&=\int \limits _{0}^{2\pi }R{\sqrt {{\big (}1-\cos(t){\big )}^{2}+\sin ^{2}(t)}}dt\\&=\int \limits _{0}^{2\pi }R{\sqrt {1-2\cos(t)+\cos ^{2}(t)+\sin ^{2}(t)}}dt\\&=\int \limits _{0}^{2\pi }R{\sqrt {2-2\cos(t)}}dt\end{aligned}}}
使用
三角恒等式
sin
2
(
t
2
)
=
1
−
cos
(
t
)
2
{\displaystyle \sin ^{2}\left({\frac {t}{2}}\right)={\frac {1-\cos(t)}{2}}}
,我们有
s
=
∫
0
2
π
R
4
sin
2
(
t
2
)
d
t
=
∫
0
2
π
2
R
sin
(
t
2
)
d
t
=
−
4
R
cos
(
t
2
)
|
0
2
π
=
−
4
R
(
−
1
−
1
)
=
8
R
{\displaystyle {\begin{aligned}s&=\int \limits _{0}^{2\pi }R{\sqrt {4\sin ^{2}\left({\frac {t}{2}}\right)}}dt\\&=\int \limits _{0}^{2\pi }2R\sin \left({\frac {t}{2}}\right)dt\\&=-4R\cos \left({\frac {t}{2}}\right){\Bigg |}_{0}^{2\pi }\\&=-4R(-1-1)\\&=\mathbf {8R} \end{aligned}}}
导航
:
主页
·
预备微积分
·
极限
·
微分
·
积分
·
参数方程和极坐标方程
·
数列和级数
·
多元微积分
·
扩展
·
参考文献
分类
:
书籍:微积分
华夏公益教科书