微积分/三角函数表
Tools
Actions
General
Sister projects
Print/export
In other projects
外观
来自维基教科书,开放的书籍,开放的世界
< 微积分
← 参考文献 | 微积分 | 求和符号 → |
三角函数表 |
勾股定理恒等式
[edit | edit source]倍角恒等式
[edit | edit source]角和恒等式
[edit | edit source]cos ( x ) + cos ( y ) = 2 cos ( x + y 2 ) cos ( x − y 2 ) {\displaystyle \cos(x)+\cos(y)=2\cos \left({\frac {x+y}{2}}\right)\cos \left({\frac {x-y}{2}}\right)}
cos ( x ) − cos ( y ) = − 2 sin ( x + y 2 ) sin ( x − y 2 ) {\displaystyle \cos(x)-\cos(y)=-2\sin \left({\frac {x+y}{2}}\right)\sin \left({\frac {x-y}{2}}\right)}
tan ( x ) + tan ( y ) = sin ( x + y ) cos ( x ) cos ( y ) {\displaystyle \tan(x)+\tan(y)={\frac {\sin(x+y)}{\cos(x)\cos(y)}}}
tan ( x ) − tan ( y ) = sin ( x − y ) cos ( x ) cos ( y ) {\displaystyle \tan(x)-\tan(y)={\frac {\sin(x-y)}{\cos(x)\cos(y)}}}
cot ( x ) + cot ( y ) = sin ( x + y ) sin ( x ) sin ( y ) {\displaystyle \cot(x)+\cot(y)={\frac {\sin(x+y)}{\sin(x)\sin(y)}}}
cot ( x ) − cot ( y ) = − sin ( x − y ) sin ( x ) sin ( y ) {\displaystyle \cot(x)-\cot(y)={\frac {-\sin(x-y)}{\sin(x)\sin(y)}}}
积化和差公式
[edit | edit source]cos ( x ) cos ( y ) = cos ( x + y ) + cos ( x − y ) 2 {\displaystyle \cos(x)\cos(y)={\frac {\cos(x+y)+\cos(x-y)}{2}}}
sin ( x ) sin ( y ) = cos ( x − y ) − cos ( x + y ) 2 {\displaystyle \sin(x)\sin(y)={\frac {\cos(x-y)-\cos(x+y)}{2}}}
sin ( x ) cos ( y ) = sin ( x + y ) + sin ( x − y ) 2 {\displaystyle \sin(x)\cos(y)={\frac {\sin(x+y)+\sin(x-y)}{2}}}
cos ( x ) sin ( y ) = sin ( x + y ) − sin ( x − y ) 2 {\displaystyle \cos(x)\sin(y)={\frac {\sin(x+y)-\sin(x-y)}{2}}}
用复指数表示
[edit | edit source]e i θ = c i s θ = i sin θ + cos θ {\displaystyle e^{i\theta }=\mathrm {cis} \theta =i\sin \theta +\cos \theta } sin θ = R e ( e i θ ) = e i θ − e − i θ 2 i {\displaystyle \sin \theta =\mathrm {Re} (e^{i\theta })={\frac {e^{i\theta }-e^{-i\theta }}{2i}}} cos θ = I m ( e i θ ) = e i θ + e − i θ 2 {\displaystyle \cos \theta =\mathrm {Im} (e^{i\theta })={\frac {e^{i\theta }+e^{-i\theta }}{2}}} tan θ = sin θ cos θ = e 2 i θ − 1 i ( e 2 i θ + 1 ) {\displaystyle \tan \theta ={\frac {\sin \theta }{\cos \theta }}={\frac {e^{2i\theta }-1}{i(e^{2i\theta }+1)}}} csc θ = 1 sin θ = 2 i e i θ − e − i θ {\displaystyle \csc \theta ={\frac {1}{\sin \theta }}={\frac {2i}{e^{i\theta }-e^{-i\theta }}}} sec θ = 1 cos θ = 2 e i θ + e − i θ {\displaystyle \sec \theta ={\frac {1}{\cos \theta }}={\frac {2}{e^{i\theta }+e^{-i\theta }}}} cot θ = 1 tan θ = i ( e 2 i θ + 1 ) e 2 i θ − 1 {\displaystyle \cot \theta ={\frac {1}{\tan \theta }}={\frac {i(e^{2i\theta }+1)}{e^{2i\theta }-1}}}
e x = sinh x + cosh x {\displaystyle e^{x}=\sinh x+\cosh x} cosh 2 x − sinh 2 x = 1 {\displaystyle \cosh ^{2}x-\sinh ^{2}x=1} s e c h 2 x = 1 − tanh 2 x {\displaystyle \mathrm {sech} ^{2}x=1-\tanh ^{2}x} c s c h 2 x = c o t h 2 x − 1 {\displaystyle \mathrm {csch} ^{2}x=\mathrm {coth} ^{2}x-1} sinh x = − i sin i x = e x − e − x 2 {\displaystyle \sinh x=-i\sin ix={\frac {e^{x}-e^{-x}}{2}}} cosh x = cos i x = e x + e − x 2 {\displaystyle \cosh x=\cos ix={\frac {e^{x}+e^{-x}}{2}}} tanh x = − i tan i x = e x − e − x e x + e − x {\displaystyle \tanh x=-i\tan ix={\frac {e^{x}-e^{-x}}{e^{x}+e^{-x}}}} c s c h x = i csc i x = 2 e x − e − x {\displaystyle \mathrm {csch} x=i\csc ix={\frac {2}{e^{x}-e^{-x}}}} s e c h x = sec i x = 2 e x + e − x {\displaystyle \mathrm {sech} x=\sec ix={\frac {2}{e^{x}+e^{-x}}}} c o t h x = i cot i x = e x + e − x e x − e − x {\displaystyle \mathrm {coth} x=i\cot ix={\frac {e^{x}+e^{-x}}{e^{x}-e^{-x}}}}
a r s i n h x = ∫ 0 x 1 t 2 + 1 d t = log ( x + x 2 + 1 ) {\displaystyle \mathrm {arsinh} x=\int _{0}^{x}{\frac {1}{\sqrt {t^{2}+1}}}\mathrm {d} t=\log \left(x+{\sqrt {x^{2}+1}}\right)} a r c o s h x = ∫ 1 x 1 t 2 − 1 d t = log ( x + x 2 − 1 ) {\displaystyle \mathrm {arcosh} x=\int _{1}^{x}{\frac {1}{\sqrt {t^{2}-1}}}\mathrm {d} t=\log \left(x+{\sqrt {x^{2}-1}}\right)} a r t a n h x = ∫ 0 x 1 1 − t 2 d t = 1 2 log ( 1 + x 1 − x ) {\displaystyle \mathrm {artanh} x=\int _{0}^{x}{\frac {1}{1-t^{2}}}\mathrm {d} t={\frac {1}{2}}\log \left({\frac {1+x}{1-x}}\right)} a r c c s h x = log ( 1 + 1 + x 2 x ) {\displaystyle \mathrm {arccsh} x=\log \left({\frac {1+{\sqrt {1+x^{2}}}}{x}}\right)} a r s e c h x = log ( 1 + 1 − x 2 x ) {\displaystyle \mathrm {arsech} x=\log \left({\frac {1+{\sqrt {1-x^{2}}}}{x}}\right)} a r c o t h x = 1 2 log ( x + 1 x − 1 ) {\displaystyle \mathrm {arcoth} x={\frac {1}{2}}\log \left({\frac {x+1}{x-1}}\right)}