雅可比矩阵和变量替换在多元微积分中被证明非常有用,当我们想要改变变量时。它们非常有用,因为如果我们想要积分一个函数,例如
∬ R e x + y x − y d A {\displaystyle \iint _{R}e^{\frac {x+y}{x-y}}\,dA} ,其中 R {\displaystyle R} 是一个以 ( 1 , 0 ) , ( 2 , 0 ) , ( 0 , − 2 ) , ( 0 , − 1 ) {\displaystyle (1,0),(2,0),(0,-2),(0,-1)} 为顶点的梯形区域,
如果我们能将 x + y {\displaystyle x+y} 替换为 u {\displaystyle u} 以及将 x − y {\displaystyle x-y} 替换为 v {\displaystyle v} 会很有帮助,因为 e u v {\displaystyle e^{\frac {u}{v}}} 更容易积分。然而,我们需要熟悉积分、变换和雅可比行列式,后两者将在本章中讨论。
让我们从介绍变量变换的过程开始。假设我们有一个函数 f ( x , y ) {\displaystyle f(x,y)} 。我们想要计算表达式
∬ R f ( x , y ) d A {\displaystyle \iint _{R}f(x,y)\,dA}
其中 R {\displaystyle R} 是 x y {\displaystyle xy} 平面上的一個區域。( d A {\displaystyle dA} 這裡不是微分。))
然而, R {\displaystyle R} 的面积过于复杂,无法用 x , y {\displaystyle x,y} 表示。因此,我们希望改变变量,以便更容易地表达 R {\displaystyle R} 的面积。此外,函数本身也很难积分。
如果可以将变量更改为更方便的变量,那就容易多了。假设还有两个变量 u , v {\displaystyle u,v} 与变量 x , y {\displaystyle x,y} 存在以下关系
x = x ( u , v ) and y = y ( u , v ) . {\displaystyle x=x(u,v)\quad {\text{and}}\quad y=y(u,v).}
原始积分可以改写为
∬ S f ( x ( u , v ) , y ( u , v ) ) | ∂ ( x , y ) ∂ ( u , v ) | d u d v {\displaystyle \iint _{S}f(x(u,v),y(u,v))\left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|\,du\,dv}
其中 S {\displaystyle S} 是 u v {\displaystyle uv} 平面中从 x y {\displaystyle xy} 平面中区域 R {\displaystyle R} 变换而来的另一个区域。本节的目的是让我们了解这种变换的过程,不包括 | ∂ ( x , y ) ∂ ( u , v ) | {\displaystyle \left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|} 部分。我们将讨论 | ∂ ( x , y ) ∂ ( u , v ) | {\displaystyle \left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|} 在 下一节 中的用途和意义。
事实上,我们在 R 3 {\displaystyle \mathbb {R} ^{3}} 中已经遇到了两个变量变换的例子。
第一个例子是在积分中使用极坐标,而第二个例子是在积分中使用球坐标。在积分中使用极坐标是一种变量变化,因为我们实际上将变量 x , y , z {\displaystyle x,y,z} 更改为 r , θ , z {\displaystyle r,\theta ,z} ,其关系为
x = r cos θ y = r sin θ z = z {\displaystyle x=r\cos \theta \quad y=r\sin \theta \quad z=z}
因此,被积函数 f ( x , y ) {\displaystyle f(x,y)} 被转换为 f ( x ( r , θ , z ) , y ( r , θ , z ) , z ( r , θ , z ) ) {\displaystyle f(x(r,\theta ,z),y(r,\theta ,z),z(r,\theta ,z))} ,从而得到
∭ R f ( x , y , z ) d V = ∭ S f ( r cos θ , r sin θ , z ) d z r d r d θ {\displaystyle \iiint _{R}f(x,y,z)dV=\iiint _{S}f(r\cos \theta ,r\sin \theta ,z)dz\ r\ dr\ d\theta } ,这就是极坐标积分公式。(稍后会证明)
第二个例子,球坐标积分,提供了一个类似的解释。原始变量 x , y , z {\displaystyle x,y,z} 和变换后的变量 ρ , θ , ϕ {\displaystyle \rho ,\theta ,\phi } 具有以下关系
{ x = ρ sin ϕ cos θ y = ρ sin ϕ sin θ z = ρ cos ϕ {\displaystyle {\begin{cases}x=\rho \sin \phi \cos \theta \\y=\rho \sin \phi \sin \theta \\z=\rho \cos \phi \end{cases}}}
这些关系可以得到
∭ R f ( x , y , z ) d V = ∭ S f ( ρ sin ϕ cos θ , ρ sin ϕ sin θ , ρ cos ϕ ) ρ 2 sin ϕ d ρ d θ d ϕ {\displaystyle \iiint _{R}f(x,y,z)dV=\iiint _{S}f(\rho \sin \phi \cos \theta ,\rho \sin \phi \sin \theta ,\rho \cos \phi )\rho ^{2}\sin \phi \ d\rho \ d\theta \ d\phi } ,这就是球坐标积分公式。(稍后会证明)
我们理解了从笛卡尔坐标系到极坐标系和球坐标系的变换。然而,这两种变换只是变量变换的具体例子。我们应该将范围扩展到所有类型的变换。我们将不再讨论特定的变换,比如 x = r cos θ , y = r sin θ and z = z {\displaystyle x=r\cos \theta ,y=r\sin \theta {\text{ and }}z=z} ,而是讨论一般的变换。让我们从两个变量开始。
我们考虑一个由变换 T {\displaystyle T} 从 u v {\displaystyle uv} -平面到 x y {\displaystyle xy} -平面给出的变量变换。换句话说,
T ( u , v ) = ( x , y ) {\displaystyle T(u,v)=(x,y)} ,其中 ( x , y ) {\displaystyle (x,y)} 是原始或旧变量,而 ( u , v ) {\displaystyle (u,v)} 是新的变量。
在这个变换中, x , y {\displaystyle x,y} 与 u , v {\displaystyle u,v} 通过以下方程相关联:
x = g ( u , v ) y = h ( u , v ) {\displaystyle x=g(u,v)\quad y=h(u,v)}
我们通常假设 T {\displaystyle T} 是一个 C 1 {\displaystyle C^{1}} 变换,这意味着 g , h {\displaystyle g,h} 具有连续的一阶偏导数。现在,我们来介绍一些术语。
如果 T ( u 1 , v 1 ) = ( x 1 , y 1 ) {\displaystyle T(u_{1},v_{1})=(x_{1},y_{1})} ,那么点 ( x 1 , y 1 ) {\displaystyle (x_{1},y_{1})} 被称为点 ( u 1 , v 1 ) {\displaystyle (u_{1},v_{1})} 的像 。
如果没有任何两个点具有相同的像,就像函数一样, T {\displaystyle T} 这个变换被称为一一对应 (或单射)。
T {\displaystyle T} 将区域 S {\displaystyle S} 变换成区域 R {\displaystyle R} 。 R {\displaystyle R} 被称为 S {\displaystyle S} 的像。这个变换可以描述为:
T ( S ) = R {\displaystyle T(S)=R}
如果 T {\displaystyle T} 是一一对应 的,那么,就像函数一样,它有一个逆变换 T − 1 {\displaystyle T^{-1}} 从 x y {\displaystyle xy} 平面到 u v {\displaystyle uv} 平面,关系为:
T − 1 ( R ) = S {\displaystyle T^{-1}(R)=S}
回顾一下,我们已经建立了变换 T ( S ) = R {\displaystyle T(S)=R} ,其中 S {\displaystyle S} 是 u v {\displaystyle uv} 平面中的区域,而 R {\displaystyle R} 是 x y {\displaystyle xy} 平面中的区域。如果给出区域 S {\displaystyle S} 和变换 T {\displaystyle T} ,我们预期能够计算区域 R {\displaystyle R} 。例如,变换由以下方程定义:
x = u 2 − v 2 y = 2 u v {\displaystyle x=u^{2}-v^{2}\quad y=2uv}
求 S {\displaystyle S} 的像,其定义为 S = { ( u , v ) : 0 ≤ u ≤ 1 , 0 ≤ v ≤ 1 } {\displaystyle S=\{(u,v):0\leq u\leq 1,\ 0\leq v\leq 1\}} 。
在这种情况下,我们需要知道区域 S {\displaystyle S} 的边界,它被以下直线限制:
u = 0 u = 1 v = 0 v = 1 {\displaystyle u=0\quad u=1\quad v=0\quad v=1}
如果我们能使用 x , y {\displaystyle x,y} 而不是 u , v {\displaystyle u,v} 来重新定义边界,我们实际上就能找到 S {\displaystyle S} 的像。
When u = 0 ( 0 ≤ v ≤ 1 ) { x = − v 2 y = 0 (substitution) Thus, y = 0 ( − 1 ≤ x ≤ 0 ) {\displaystyle {\begin{aligned}{\text{When }}\quad &u=0\quad (0\leq v\leq 1)\\&{\begin{cases}x=-v^{2}\\y=0\\\end{cases}}\quad {\text{(substitution)}}\\{\text{Thus, }}\quad &y=0\quad (-1\leq x\leq 0)\\\end{aligned}}} When u = 1 ( 0 ≤ v ≤ 1 ) { x = 1 − v 2 y = 2 v Thus, x = 1 − y 2 4 ( 0 ≤ x ≤ 1 ) {\displaystyle {\begin{aligned}{\text{When }}\quad &u=1\quad (0\leq v\leq 1)\\&{\begin{cases}x=1-v^{2}\\y=2v\\\end{cases}}\\{\text{Thus, }}\quad &x=1-{\frac {y^{2}}{4}}\quad (0\leq x\leq 1)\\\end{aligned}}} When v = 0 ( 0 ≤ 0 ≤ 1 ) { x = u 2 y = 0 Thus, y = 0 ( 0 ≤ x ≤ 1 ) {\displaystyle {\begin{aligned}{\text{When }}\quad &v=0\quad (0\leq 0\leq 1)\\&{\begin{cases}x=u^{2}\\y=0\\\end{cases}}\\{\text{Thus, }}\quad &y=0\quad (0\leq x\leq 1)\\\end{aligned}}} When v = 1 ( 0 ≤ u ≤ 1 ) { x = u 2 − 1 y = 2 u Thus, x = y 2 4 − 1 ( − 1 ≤ x ≤ 0 ) {\displaystyle {\begin{aligned}{\text{When }}\quad &v=1\quad (0\leq u\leq 1)\\&{\begin{cases}x=u^{2}-1\\y=2u\\\end{cases}}\\{\text{Thus, }}\quad &x={\frac {y^{2}}{4}}-1\quad (-1\leq x\leq 0)\\\end{aligned}}}
因此, S {\displaystyle S} 的图像为 R = { ( x , y ) : 0 ≤ y ≤ 2 , y 2 4 − 1 ≤ x ≤ 1 − y 2 4 } {\displaystyle R=\{(x,y):0\leq y\leq 2,\ {\frac {y^{2}}{4}}-1\leq x\leq 1-{\frac {y^{2}}{4}}\}}
我们可以使用相同的方法计算 S {\displaystyle S} 从 R {\displaystyle R} .
雅可比矩阵是本章最重要的概念之一。它“补偿”了当我们改变变量时面积的变化,从而使在改变变量后,积分的结果不会发生变化。回想一下,在上节的开头,我们保留了对 | ∂ ( x , y ) ∂ ( u , v ) | {\displaystyle \left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|} 的解释,来自 ∬ S f ( x ( u , v ) , y ( u , v ) ) | ∂ ( x , y ) ∂ ( u , v ) | d u d v {\displaystyle \iint _{S}f(x(u,v),y(u,v))\left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|\ du\ dv} 这里。为了真正开始解释,我们应该回顾一些基本概念。
回想一下,当我们讨论 u {\displaystyle u} -替换(描述“单变量函数的替换积分”的一种简单方法)时,我们使用以下方法来求解积分。
∫ a b f ( x ) d x = ∫ c d f ( x ( u ) ) d x d u d u where c = x ( a ) , d = x ( b ) {\displaystyle \int _{a}^{b}f(x)\ dx=\int _{c}^{d}f(x(u))\ {\frac {dx}{du}}\ du\quad {\text{where }}c=x(a),d=x(b)}
例如,
∫ sin ( ln ( x ) ) x d x {\displaystyle \int {\frac {\sin(\ln(x))}{x}}\ dx}
Let u = ln ( x ) Thus, d u d x = 1 x ⇒ d u = 1 x d x {\displaystyle {\begin{aligned}{\text{Let }}\quad &u=\ln(x)\\{\text{Thus, }}\quad &{\frac {du}{dx}}={\frac {1}{x}}\\\Rightarrow \ &du={\frac {1}{x}}dx\\\end{aligned}}}
∫ sin ( ln ( x ) ) x d x = ∫ sin ( ln ( x ) ) ( 1 x d x ) rearrangement = ∫ sin ( u ) d u let u = ln ( x ) ⟹ d u = 1 x d x = − cos ( u ) + C integration = − cos ( ln ( x ) ) + C resubstitution {\displaystyle {\begin{aligned}\int {\frac {\sin(\ln(x))}{x}}\ dx&=\int \sin(\ln(x))\ {\Big (}{\frac {1}{x}}\ dx{\Big )}&\quad {\text{rearrangement}}\\&=\int \sin(u)\ du&\quad {\text{let }}u=\ln(x)\implies du={\frac {1}{x}}\ dx\\&=-\cos(u)+C&\quad {\text{integration}}\\&=-\cos(\ln(x))+C&\quad {\text{resubstitution}}\\\end{aligned}}}
如果我们在积分中添加端点,结果将是
∫ e e 2 sin ( ln ( x ) ) x d x = ∫ e e 2 sin ( ln ( x ) ) ( 1 x d x ) rearrangement = ∫ 1 2 sin ( u ) d u remember u = ln ( x ) and d u = 1 x d x = [ − cos ( u ) ] 1 2 integration = cos ( 1 ) − cos ( 2 ) {\displaystyle {\begin{aligned}\int _{e}^{e^{2}}{\frac {\sin(\ln(x))}{x}}\ dx&=\int _{e}^{e^{2}}\sin(\ln(x))\ {\Big (}{\frac {1}{x}}\ dx{\Big )}&\quad {\text{rearrangement}}\\&=\int _{1}^{2}\sin(u)\ du&\quad {\text{remember }}u=\ln(x){\text{ and }}du={\frac {1}{x}}\ dx\\&={\Big [}-\cos(u){\Big ]}_{1}^{2}&\quad {\text{integration}}\\&=\cos(1)-\cos(2)\\\end{aligned}}}
如果我们仔细观察解中的“重排”和“记住”部分,我们会发现我们有效地将我们的变量从 x {\displaystyle x} 更改为 u {\displaystyle u} 通过这种方法
∫ a b f ( x ) d x = ∫ x = a x = b f ( x ( u ) ) d ( x ( u ) ) = ∫ u = x ( a ) u = x ( b ) f ( x ( u ) ) d x d u d u {\displaystyle \int _{a}^{b}f(x)dx=\int _{x=a}^{x=b}f(x(u))\ d(x(u))=\int _{u=x(a)}^{u=x(b)}f(x(u))\ {\frac {dx}{du}}\ du} ,这就是我们上面提到的。
术语 d x d u {\displaystyle {\frac {dx}{du}}} 的出现不仅是演绎的数学产物,而且具有直观的意义。当我们将函数从 f ( x ) {\displaystyle f(x)} 更改为 f ( x ( u ) ) {\displaystyle f(x(u))} 时,我们也 改变了积分区域 ,这可以通过查看端点来观察。这种区域的变化要么被 “拉伸” ,要么被 “压缩” ,其因子为 d u d x {\displaystyle {\frac {du}{dx}}} 。为了抵消这种变化, d x d u {\displaystyle {\frac {dx}{du}}} 被推导出以进行折衷(回想一下 d x d u ( d u d x ) = 1 {\displaystyle {\frac {dx}{du}}\left({\frac {du}{dx}}\right)=1} )。我们可以简单地将此项视为一个折衷因子,它抵消了由于变量变化而引起的区域变化。
现在,让我们将注意力重新集中到两个变量上。如果我们将变量从 x , y {\displaystyle x,y} 更改为 u , v {\displaystyle u,v} ,我们也 改变了积分区域 ,如上一节所述。
所以,继续我们的思路,应该也存在一个推导出的项来抵消区域的变化。换句话说
∬ R f ( x , y ) d A 1 = ∬ S f ( x ( u , v ) , y ( u , v ) ) d A 1 d A 2 ⏟ informal term d A 2 {\displaystyle \iint _{R}f(x,y)\,dA_{1}=\iint _{S}f(x(u,v),y(u,v))\underbrace {\frac {dA_{1}}{dA_{2}}} _{\text{informal term}}\,dA_{2}}
请注意,这里使用的符号仅用于 直观目的 ,并非官方使用。官方术语将在本章稍后介绍,但目前,我们使用这些术语以便更好地理解。
在这种情况下,当我们将函数从 f ( x , y ) {\displaystyle f(x,y)} 更改为 f ( x ( u ) , y ( u ) ) {\displaystyle f(x(u),y(u))} 时,我们“拉伸” 或“压缩” 了我们区域的面积,其比例为 d A 2 d A 1 {\displaystyle {\frac {dA_{2}}{dA_{1}}}} ;因此,我们需要用一个比例因子 d A 1 d A 2 {\displaystyle {\frac {dA_{1}}{dA_{2}}}} 来抵消这种变化。对于两个变量的雅可比矩阵本质上是用于计算 d A 1 d A 2 {\displaystyle {\frac {dA_{1}}{dA_{2}}}} 的表达式,它是用 u , v {\displaystyle u,v} 表示的,这样我们就可以在变换后对新的积分进行积分,因为新的积分中涉及的函数只能用 u , v {\displaystyle u,v} 表示,而不能用 x , y {\displaystyle x,y} 表示(我们需要用 u , v {\displaystyle u,v} 来表示 x {\displaystyle x} 和 y {\displaystyle y} )。
现在,我们来推导雅可比矩阵。在上面的回顾中,我们已经非正式地 确定了两个变量的雅可比矩阵基本上是 d A 1 d A 2 {\displaystyle {\frac {dA_{1}}{dA_{2}}}} ,其中 d A 1 {\displaystyle dA_{1}} 是 x y {\displaystyle xy} 平面中区域 R {\displaystyle R} 中的无穷小面积,而 d A 2 {\displaystyle dA_{2}} 是 u v {\displaystyle uv} 平面中区域 S {\displaystyle S} 中的无穷小面积。由于我们将变量从 x , y {\displaystyle x,y} 更改为 u , v {\displaystyle u,v} ,我们应该用 u , v {\displaystyle u,v} 在 u v {\displaystyle uv} 平面中的某个区域上描述 d A 1 {\displaystyle dA_{1}} 和 d A 2 {\displaystyle dA_{2}} 。
让我们先从 d A 2 {\displaystyle dA_{2}} 开始,因为它更容易计算。我们从一个小的矩形 S 0 {\displaystyle S_{0}} 开始,它是 S {\displaystyle S} 的一部分,位于 u v {\displaystyle uv} -平面上,其左下角为点 ( u 0 , v 0 ) {\displaystyle (u_{0},v_{0})} ,其尺寸为 Δ u , Δ v {\displaystyle \Delta u,\Delta v} 。因此, S 0 {\displaystyle S_{0}} 的面积为
Δ A 2 = Δ u Δ v {\displaystyle \Delta A_{2}=\Delta u\Delta v}
S 0 {\displaystyle S_{0}} 的图像,在本例中我们将其命名为 R 0 {\displaystyle R_{0}} ,位于 x y {\displaystyle xy} -平面上,根据变换 T ( S 0 ) = R 0 {\displaystyle T(S_{0})=R_{0}} 。它的边界点之一是 ( x 0 , y 0 ) = T ( u 0 , v 0 ) {\displaystyle (x_{0},y_{0})=T(u_{0},v_{0})} 。我们可以使用向量 r {\displaystyle \mathbf {r} } 来描述 R 0 {\displaystyle R_{0}} 的点 ( u , v ) {\displaystyle (u,v)} 的位置向量。换句话说, r {\displaystyle \mathbf {r} } 可以描述区域 R 0 {\displaystyle R_{0}} ,鉴于
r ( u , v ) = x ( u , v ) i + y ( u , v ) j where u 0 ≤ u ≤ u 0 + Δ u , v 0 ≤ v ≤ v 0 + Δ v {\displaystyle \mathbf {r} (u,v)=x(u,v)\mathbf {i} +y(u,v)\mathbf {j} \quad {\text{where }}u_{0}\leq u\leq u_{0}+\Delta u,\ v_{0}\leq v\leq v_{0}+\Delta v}
区域 R 0 {\displaystyle R_{0}} 现在可以用 u , v {\displaystyle u,v} 来描述。下一步是利用位置向量 r ( u , v ) {\displaystyle \mathbf {r} (u,v)} 计算它的面积 d A 1 {\displaystyle dA_{1}} .
变换 R 0 = T ( S 0 ) {\displaystyle R_{0}=T(S_{0})} 后,区域 R 0 {\displaystyle R_{0}} 的形状可以近似为平行四边形。我们知道,平行四边形的面积定义为底乘以高。然而,这个定义并不能帮助我们进行计算。相反,我们将使用叉积来确定它的面积。回想一下,由向量 a {\displaystyle \mathbf {a} } 和 b {\displaystyle \mathbf {b} } 形成的平行四边形的面积可以通过取这两个向量的叉积的模长来计算。
Δ A 1 = | a × b | {\displaystyle \Delta A_{1}=|\mathbf {a} \times \mathbf {b} |}
在这个平行四边形中,两个向量 a {\displaystyle \mathbf {a} } 和 b {\displaystyle \mathbf {b} } 是用 u , v {\displaystyle u,v} 表示的
a = r ( u 0 + Δ u , v 0 ) − r ( u 0 , v 0 ) and b = r ( u 0 , v 0 + Δ v ) − r ( u 0 , v 0 ) {\displaystyle \mathbf {a} =\mathbf {r} (u_{0}+\Delta u,v_{0})-\mathbf {r} (u_{0},v_{0})\quad {\text{ and }}\quad \mathbf {b} =\mathbf {r} (u_{0},v_{0}+\Delta v)-\mathbf {r} (u_{0},v_{0})}
这看起来非常类似于偏导数的定义
r u = lim Δ u → 0 r ( u 0 + Δ u , v 0 ) − r ( u 0 , v 0 ) Δ u and r v = lim Δ v → 0 r ( u 0 , v 0 + Δ v ) − r ( u 0 , v 0 ) Δ v {\displaystyle \mathbf {r} _{u}=\lim _{\Delta u\rightarrow 0}{\frac {\mathbf {r} (u_{0}+\Delta u,v_{0})-\mathbf {r} (u_{0},v_{0})}{\Delta u}}\quad {\text{ and }}\quad \mathbf {r} _{v}=\lim _{\Delta v\rightarrow 0}{\frac {\mathbf {r} (u_{0},v_{0}+\Delta v)-\mathbf {r} (u_{0},v_{0})}{\Delta v}}}
因此,我们可以近似地认为
a = r ( u 0 + Δ u , v 0 ) − r ( u 0 , v 0 ) ≈ Δ u r u and b = r ( u 0 , v 0 + Δ v ) − r ( u 0 , v 0 ) ≈ Δ v r v {\displaystyle {\begin{aligned}&\mathbf {a} =\mathbf {r} (u_{0}+\Delta u,v_{0})-\mathbf {r} (u_{0},v_{0})\approx \Delta u\mathbf {r} _{u}\quad {\text{ and }}\quad \\&\mathbf {b} =\mathbf {r} (u_{0},v_{0}+\Delta v)-\mathbf {r} (u_{0},v_{0})\approx \Delta v\mathbf {r} _{v}\\\end{aligned}}}
现在,我们计算 r u , r v {\displaystyle \mathbf {r} _{u},\mathbf {r} _{v}} ,考虑到 r ( u , v ) = x ( u , v ) i + y ( u , v ) j {\displaystyle \mathbf {r} (u,v)=x(u,v)\mathbf {i} +y(u,v)\mathbf {j} }
r u = x u ( u , v ) i + y u ( u , v ) j = ∂ x ∂ u i + ∂ y ∂ u j and r v = x v ( u , v ) i + y v ( u , v ) j = ∂ x ∂ v i + ∂ y ∂ v j {\displaystyle {\begin{aligned}&\mathbf {r} _{u}=x_{u}(u,v)\ \mathbf {i} +y_{u}(u,v)\ \mathbf {j} ={\frac {\partial x}{\partial u}}\ \mathbf {i} +{\frac {\partial y}{\partial u}}\ \mathbf {j} \quad {\text{ and }}\\&\mathbf {r} _{v}=x_{v}(u,v)\ \mathbf {i} +y_{v}(u,v)\ \mathbf {j} ={\frac {\partial x}{\partial v}}\ \mathbf {i} +{\frac {\partial y}{\partial v}}\ \mathbf {j} \\\end{aligned}}}
我们可以计算 Δ A 1 = | | a × b | | {\displaystyle \Delta A_{1}=||\mathbf {a} \times \mathbf {b} ||} (我们取绝对值以防止出现负面积)。您可以查看第7.1 章中的叉积。请注意,|| 内部的竖线用于计算大小(或范数),而 || 外部的竖线用于取绝对值。
Δ A 1 = | | a × b | | = | | ( Δ u r u ) × ( Δ v r v ) | | approximation = | | r u × r v | | Δ u Δ v = | | det ( i j k ∂ x ∂ u ∂ y ∂ u 0 ∂ x ∂ v ∂ y ∂ v 0 ) | | Δ u Δ v cross product = | | det ( ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ) k | | Δ u Δ v evaluation = | det ( ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ) | k | ⏟ 1 | Δ u Δ v {\displaystyle {\begin{aligned}\Delta A_{1}&=||\mathbf {a} \times \mathbf {b} ||\\&=||(\Delta u\ \mathbf {r} _{u})\times (\Delta v\ \mathbf {r} _{v})||&\quad {\text{approximation}}\\&=||\mathbf {r} _{u}\times \mathbf {r} _{v}||\Delta u\Delta v\\&={\begin{vmatrix}{\begin{vmatrix}\det {\begin{pmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\{\frac {\partial x}{\partial u}}&{\frac {\partial y}{\partial u}}&0\\{\frac {\partial x}{\partial v}}&{\frac {\partial y}{\partial v}}&0\\\end{pmatrix}}\\\end{vmatrix}}\end{vmatrix}}\Delta u\Delta v&\quad {\text{cross product}}\\&={\begin{vmatrix}{\begin{vmatrix}\det {\begin{pmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}\\\end{pmatrix}}\mathbf {k} \end{vmatrix}}\end{vmatrix}}\Delta u\Delta v&\quad {\text{evaluation}}\\&={\begin{vmatrix}\det {\begin{pmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}\\\end{pmatrix}}\underbrace {|\mathbf {k} |} _{1}\end{vmatrix}}\Delta u\Delta v\\\end{aligned}}}
然后,我们可以代入我们新推导的项。
Δ A 1 Δ A 2 = | det ( ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ) | Δ u Δ v Δ u Δ v = | det ( ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ) | = | ∂ x ∂ u ∂ y ∂ v − ∂ x ∂ v ∂ y ∂ u | {\displaystyle {\frac {\Delta A_{1}}{\Delta A_{2}}}={\frac {{\begin{vmatrix}\det {\begin{pmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}\\\end{pmatrix}}\end{vmatrix}}\Delta u\Delta v}{\Delta u\Delta v}}={\begin{vmatrix}\det {\begin{pmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}\\\end{pmatrix}}\end{vmatrix}}=\left|{\frac {\partial x}{\partial u}}{\frac {\partial y}{\partial v}}-{\frac {\partial x}{\partial v}}{\frac {\partial y}{\partial u}}\right|}
最后,我们推导出雅可比行列式的绝对值 。雅可比行列式的定义如下
然后,我们将在积分变量替换中使用雅可比行列式。添加绝对值是为了防止出现负面积。
∬ R f ( x , y ) d A ≈ ∑ i = 1 m ∑ j = 1 n f ( x i , y j ) Δ A ≈ ∑ i = 1 m ∑ j = 1 n f ( x ( u i , v j ) , y ( u i , v j ) ) Δ A 2 Since Δ A 2 ≈ | ∂ ( x , y ) ∂ ( u , v ) | Δ u Δ v ∑ i = 1 m ∑ j = 1 n f ( x ( u i , v j ) , y ( u i , v j ) ) Δ A 2 ≈ ∑ i = 1 m ∑ j = 1 n f ( x ( u i , v j ) , y ( u i , v j ) ) | ∂ ( x , y ) ∂ ( u , v ) | Δ u Δ v ≈ ∬ S f ( x ( u , v ) , y ( u , v ) ) | ∂ ( x , y ) ∂ ( u , v ) | d u d v {\displaystyle {\begin{aligned}\iint _{R}f(x,y)\,dA&\approx \sum _{i=1}^{m}\sum _{j=1}^{n}f(x_{i},y_{j})\Delta A\\&\approx \sum _{i=1}^{m}\sum _{j=1}^{n}f(x(u_{i},v_{j}),y(u_{i},v_{j}))\Delta A_{2}\\{\text{Since }}&\Delta A_{2}\approx \left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|\Delta u\Delta v\\\sum _{i=1}^{m}\sum _{j=1}^{n}f(x(u_{i},v_{j}),y(u_{i},v_{j}))\Delta A_{2}&\approx \sum _{i=1}^{m}\sum _{j=1}^{n}f(x(u_{i},v_{j}),y(u_{i},v_{j}))\ \left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|\Delta u\Delta v\\&\approx \iint _{S}f(x(u,v),y(u,v))\ \left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|\ du\ dv\\\end{aligned}}}
以下是二重积分变量替换定理,我们已经 直观地解释 了为什么以及如何起作用,但上述解释 并非 证明 该定理。具体来说,我们进行了一些近似,而以下定理中的表述是 等式 ,而不是近似。 实际的 证明 非常复杂且高级,因此这里不包括。
定理. (二重积分的变量替换)假设 T {\displaystyle T} 是一个 C 1 {\displaystyle C^{1}} 变换,其雅可比行列式不为零,并且将 u v {\displaystyle uv} 平面上的区域 S {\displaystyle S} 单射映射到 x y {\displaystyle xy} 平面上的区域 R {\displaystyle R} ,通过变量替换 x = x ( u , v ) {\displaystyle x=x(u,v)} 和 y = y ( u , v ) {\displaystyle y=y(u,v)} 。假设 f {\displaystyle f} 在 R {\displaystyle R} 上连续,我们有 ∬ R f ( x , y ) d x d y = ∬ S f ( x ( u , v ) , y ( u , v ) ) | ∂ ( x , y ) ∂ ( u , v ) | d u d v {\displaystyle \iint _{R}f(x,y)\,dx\,dy=\iint _{S}f(x(u,v),y(u,v))\left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|\,du\,dv}
备注.
如果我们改变一些符号,我们可以得到 ∬ S f ( u ( x , y ) , v ( x , y ) ) | ∂ ( u , v ) ∂ ( x , y ) | d x d y = ∬ R f ( u , v ) d u d v , {\displaystyle \iint _{S}f(u(x,y),v(x,y))\left|{\frac {\partial (u,v)}{\partial (x,y)}}\right|\,dx\,dy=\iint _{R}f(u,v)\,du\,dv,} (在这种情况下, T {\displaystyle T} 将 x y {\displaystyle xy} 平面上的区域 S {\displaystyle S} 映射到 u v {\displaystyle uv} 平面上的区域 R {\displaystyle R} 。)有时可能是一个更方便的形式。
证明。
Let u = x + y {\displaystyle u=x+y} and v = y x {\displaystyle v={\frac {y}{x}}} , and D ′ {\displaystyle D'} be the transformed region via these changes of variables. Solving these two equations, { u = x + y v = y x ⟹ { y = u − x v = y x ⟹ v = u − x x ⟹ x = u v + 1 ⟹ y = u − u v + 1 = u v v + 1 . {\displaystyle {\begin{cases}u=x+y\\v={\frac {y}{x}}\end{cases}}\implies {\begin{cases}y=u-x\\v={\frac {y}{x}}\end{cases}}\implies v={\frac {u-x}{x}}\implies x={\frac {u}{v+1}}\implies y=u-{\frac {u}{v+1}}={\frac {uv}{v+1}}.} Therefore, the Jacobian for this transformation is ∂ ( x , y ) ∂ ( u , v ) = | ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v | = | 1 v + 1 − u ( v + 1 ) 2 v v + 1 ( v + 1 ) u − u v ( v + 1 ) 2 | = 1 v + 1 ⋅ u ( v + 1 ) 2 − − u ( v + 1 ) 2 ⋅ v v + 1 = u + u v ( v + 1 ) 3 = u ( v + 1 ) 2 . {\displaystyle {\frac {\partial (x,y)}{\partial (u,v)}}={\begin{vmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}\end{vmatrix}}={\begin{vmatrix}{\frac {1}{v+1}}&{\frac {-u}{(v+1)^{2}}}\\{\frac {v}{v+1}}&{\frac {(v+1)u-uv}{(v+1)^{2}}}\end{vmatrix}}={\frac {1}{v+1}}\cdot {\frac {u}{(v+1)^{2}}}-{\frac {-u}{(v+1)^{2}}}\cdot {\frac {v}{v+1}}={\frac {u+uv}{(v+1)^{3}}}={\frac {u}{(v+1)^{2}}}.} Also, the bounds for x + y {\displaystyle x+y} and y x {\displaystyle {\frac {y}{x}}} in D {\displaystyle D} are 2 ≤ x + y ≤ 3 {\displaystyle 2\leq x+y\leq 3} and 4 ≤ y x ≤ 5 {\displaystyle 4\leq {\frac {y}{x}}\leq 5} . So, the bounds for u {\displaystyle u} and v {\displaystyle v} in D ′ {\displaystyle D'} are 2 ≤ u ≤ 3 {\displaystyle 2\leq u\leq 3} and 4 ≤ v ≤ 5 {\displaystyle 4\leq v\leq 5} . Thus, the desired integral is ∬ D y ( x + y ) x d x = ∫ 4 5 ∫ 2 3 ( u v ⋅ u ( v + 1 ) 2 ⏟ > 0 because of the bounds ) d u d v = ∫ 4 5 v ( v + 1 ) 2 ( 3 3 3 − 2 3 3 ) d v = 19 3 ∫ 4 + 1 5 + 1 w − 1 w 2 d w let w = v + 1 ⟹ d w = d v = 19 3 [ ln | w | − 1 w ] 5 6 = 19 3 ( ln 6 − ln 5 + 1 30 ) = 19 3 ( ln ( 6 5 ) + 1 30 ) by properties of logarithm {\displaystyle {\begin{aligned}\iint _{D}{\frac {y(x+y)}{x}}dx&=\int _{4}^{5}\int _{2}^{3}\left(uv\cdot \underbrace {\frac {u}{(v+1)^{2}}} _{>0{\text{ because of the bounds}}}\right)\,du\,dv\\&=\int _{4}^{5}{\frac {v}{(v+1)^{2}}}\left({\frac {3^{3}}{3}}-{\frac {2^{3}}{3}}\right)\,dv\\&={\frac {19}{3}}\int _{4+1}^{5+1}{\frac {w-1}{w^{2}}}\,dw\qquad {\text{let }}w=v+1\implies dw=dv\\&={\frac {19}{3}}\left[\ln |w|-{\frac {1}{w}}\right]_{5}^{6}\\&={\frac {19}{3}}\left(\ln 6-\ln 5+{\frac {1}{30}}\right)\\&={\frac {19}{3}}\left(\ln \left({\frac {6}{5}}\right)+{\frac {1}{30}}\right)\qquad {\text{by properties of logarithm}}\end{aligned}}}
如果我们继续思考,我们也可以找到三个变量的雅可比行列式。假设有一个函数 f ( x , y , z ) {\displaystyle f(x,y,z)} 。 x , y , z {\displaystyle x,y,z} 与 u , v , w {\displaystyle u,v,w} 有关,它们是
x = x ( u , v , w ) , y = y ( u , v , w ) , and z = z ( u , v , w ) {\displaystyle x=x(u,v,w),\quad y=y(u,v,w),\quad {\text{and}}\quad z=z(u,v,w)}
R {\displaystyle R} 是 x y z {\displaystyle xyz} -空间中的一个区域,而 S {\displaystyle S} 是 u v w {\displaystyle uvw} -空间中的一个区域,变换 T ( S ) = R {\displaystyle T(S)=R} 。
为了计算三个变量的雅可比行列式,我们进行类似的过程。变换过程将是:将 u v w {\displaystyle uvw} -空间中尺寸为 Δ u , Δ v , Δ w {\displaystyle \Delta u,\Delta v,\Delta w} 的长方体变换到 x y z {\displaystyle xyz} -空间中的平行六面体,体积为 Δ V 2 = Δ u Δ v Δ w {\displaystyle \Delta V_{2}=\Delta u\Delta v\Delta w} 。平行六面体可以用位置向量描述
r ( u , v , w ) = x ( u , v , w ) i + y ( u , v , w ) j + z ( u , v , w ) k {\displaystyle \mathbf {r} (u,v,w)=x(u,v,w)\ \mathbf {i} +y(u,v,w)\ \mathbf {j} +z(u,v,w)\ \mathbf {k} }
平行六面体的三个边可以用位置向量描述为
a = r ( u + Δ u , v , w ) − r ( u , v , w ) , b = r ( u , v + Δ v , w ) − r ( u , v , w ) , and c = r ( u , v , w + Δ w ) − r ( u , v , w ) . {\displaystyle {\begin{aligned}&\mathbf {a} =\mathbf {r} (u+\Delta u,v,w)-\mathbf {r} (u,v,w),\\&\mathbf {b} =\mathbf {r} (u,v+\Delta v,w)-\mathbf {r} (u,v,w),\quad {\text{and}}\\&\mathbf {c} =\mathbf {r} (u,v,w+\Delta w)-\mathbf {r} (u,v,w).\\\end{aligned}}}
由于 r {\displaystyle \mathbf {r} } 的导数定义为
r u = lim Δ u → 0 r ( u + Δ u , v , w ) − r ( u , v , w ) Δ u , r v = lim Δ v → 0 r ( u , v + Δ v , w ) − r ( u , v , w ) Δ v , and r w = lim Δ w → 0 r ( u , v , w + Δ w ) − r ( u , v , w ) Δ w . {\displaystyle {\begin{aligned}&\mathbf {r} _{u}=\lim _{\Delta u\rightarrow 0}{\frac {\mathbf {r} (u+\Delta u,v,w)-\mathbf {r} (u,v,w)}{\Delta u}},\\&\mathbf {r} _{v}=\lim _{\Delta v\rightarrow 0}{\frac {\mathbf {r} (u,v+\Delta v,w)-\mathbf {r} (u,v,w)}{\Delta v}},\quad {\text{and}}\\&\mathbf {r} _{w}=\lim _{\Delta w\rightarrow 0}{\frac {\mathbf {r} (u,v,w+\Delta w)-\mathbf {r} (u,v,w)}{\Delta w}}.\\\end{aligned}}}
三个向量 a , b , c {\displaystyle \mathbf {a} ,\mathbf {b} ,\mathbf {c} } 可以类似地近似为
a ≈ Δ u r u , b ≈ Δ v r v , and c ≈ Δ w r w {\displaystyle \mathbf {a} \approx \Delta u\ \mathbf {r} _{u},\quad \mathbf {b} \approx \Delta v\ \mathbf {r} _{v},\quad {\text{and}}\quad \mathbf {c} \approx \Delta w\ \mathbf {r} _{w}}
由于位置向量 r {\displaystyle \mathbf {r} } 是 r ( u , v , w ) = x ( u , v , w ) i + y ( u , v , w ) j + z ( u , v , w ) k {\displaystyle \mathbf {r} (u,v,w)=x(u,v,w)\ \mathbf {i} +y(u,v,w)\ \mathbf {j} +z(u,v,w)\ \mathbf {k} } , r {\displaystyle \mathbf {r} } 的偏导数为
r u = ∂ x ∂ u i + ∂ y ∂ u j + ∂ z ∂ u k , r v = ∂ x ∂ v i + ∂ y ∂ v j + ∂ z ∂ v k , and r v = ∂ x ∂ w i + ∂ y ∂ w j + ∂ z ∂ w k {\displaystyle {\begin{aligned}&\mathbf {r} _{u}={\frac {\partial x}{\partial u}}\ \mathbf {i} +{\frac {\partial y}{\partial u}}\ \mathbf {j} +{\frac {\partial z}{\partial u}}\ \mathbf {k} ,\\&\mathbf {r} _{v}={\frac {\partial x}{\partial v}}\ \mathbf {i} +{\frac {\partial y}{\partial v}}\ \mathbf {j} +{\frac {\partial z}{\partial v}}\ \mathbf {k} ,\quad {\text{and}}\\&\mathbf {r} _{v}={\frac {\partial x}{\partial w}}\ \mathbf {i} +{\frac {\partial y}{\partial w}}\ \mathbf {j} +{\frac {\partial z}{\partial w}}\ \mathbf {k} \\\end{aligned}}}
回想一下,由向量 a , b , c {\displaystyle \mathbf {a} ,\mathbf {b} ,\mathbf {c} } 确定的平行六面体的体积是它们标量三重积的模
V = | ( a × b ) ⋅ c | {\displaystyle V=|(\mathbf {a} \times \mathbf {b} )\ \cdot \ \mathbf {c} |}
我们只需要将向量替换为我们得到的向量。
Δ V 1 = | ( a × b ) ⋅ c | = | ( Δ u r u ) × ( Δ v r v ) ⋅ Δ w r w | = | r u × r v ⋅ r w | Δ u Δ v Δ w = | | i j k ∂ x ∂ u ∂ y ∂ u ∂ z ∂ u ∂ x ∂ v ∂ y ∂ v ∂ z ∂ v | ⋅ ( ∂ x ∂ w ∂ y ∂ w ∂ z ∂ w ) | Δ u Δ v Δ w cross product = | ( ∂ y ∂ u ∂ z ∂ v − ∂ z ∂ u ∂ y ∂ v ∂ z ∂ u ∂ x ∂ v − ∂ x ∂ u ∂ z ∂ v ∂ x ∂ u ∂ y ∂ v − ∂ y ∂ u ∂ x ∂ v ) ⋅ ( ∂ x ∂ w ∂ y ∂ w ∂ z ∂ w ) | Δ u Δ v Δ w = | ∂ x ∂ w ∂ y ∂ u ∂ z ∂ v − ∂ x ∂ w ∂ y ∂ v ∂ z ∂ u + ∂ x ∂ v ∂ y ∂ w ∂ z ∂ u − ∂ x ∂ u ∂ y ∂ w ∂ z ∂ v + ∂ x ∂ u ∂ y ∂ v ∂ z ∂ w − ∂ x ∂ v ∂ y ∂ u ∂ z ∂ w | Δ u Δ v Δ w dot product = | ∂ x ∂ u ( ∂ y ∂ v ∂ z ∂ w − ∂ y ∂ w ∂ z ∂ v ) + ∂ x ∂ v ( ∂ y ∂ w ∂ z ∂ u − ∂ y ∂ u ∂ z ∂ w ) + ∂ x ∂ w ( ∂ y ∂ u ∂ z ∂ v − ∂ y ∂ v ∂ z ∂ u ) | Δ u Δ v Δ w rearrangement = | | ∂ x ∂ u ∂ x ∂ v ∂ x ∂ w ∂ y ∂ u ∂ y ∂ v ∂ y ∂ w ∂ z ∂ u ∂ z ∂ v ∂ z ∂ w | | Δ u Δ v Δ w cross product {\displaystyle {\begin{aligned}\Delta V_{1}=|(\mathbf {a} \times \mathbf {b} )\ \cdot \ \mathbf {c} |&=|(\Delta u\ \mathbf {r} _{u})\times (\Delta v\ \mathbf {r} _{v})\ \cdot \ \Delta w\ \mathbf {r} _{w}|\\&=|\mathbf {r} _{u}\times \mathbf {r} _{v}\ \cdot \ \mathbf {r} _{w}|\Delta u\Delta v\Delta w\\&={\begin{vmatrix}{\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\{\frac {\partial x}{\partial u}}&{\frac {\partial y}{\partial u}}&{\frac {\partial z}{\partial u}}\\{\frac {\partial x}{\partial v}}&{\frac {\partial y}{\partial v}}&{\frac {\partial z}{\partial v}}\\\end{vmatrix}}\ \cdot \ {\begin{pmatrix}{\frac {\partial x}{\partial w}}\\{\frac {\partial y}{\partial w}}\\{\frac {\partial z}{\partial w}}\\\end{pmatrix}}\end{vmatrix}}\Delta u\Delta v\Delta w&\quad {\text{cross product}}\\&={\begin{vmatrix}{\begin{pmatrix}{\frac {\partial y}{\partial u}}{\frac {\partial z}{\partial v}}-{\frac {\partial z}{\partial u}}{\frac {\partial y}{\partial v}}\\{\frac {\partial z}{\partial u}}{\frac {\partial x}{\partial v}}-{\frac {\partial x}{\partial u}}{\frac {\partial z}{\partial v}}\\{\frac {\partial x}{\partial u}}{\frac {\partial y}{\partial v}}-{\frac {\partial y}{\partial u}}{\frac {\partial x}{\partial v}}\\\end{pmatrix}}\ \cdot \ {\begin{pmatrix}{\frac {\partial x}{\partial w}}\\{\frac {\partial y}{\partial w}}\\{\frac {\partial z}{\partial w}}\\\end{pmatrix}}\end{vmatrix}}\Delta u\Delta v\Delta w\\&=\left|{\frac {\partial x}{\partial w}}{\frac {\partial y}{\partial u}}{\frac {\partial z}{\partial v}}-{\frac {\partial x}{\partial w}}{\frac {\partial y}{\partial v}}{\frac {\partial z}{\partial u}}+{\frac {\partial x}{\partial v}}{\frac {\partial y}{\partial w}}{\frac {\partial z}{\partial u}}-{\frac {\partial x}{\partial u}}{\frac {\partial y}{\partial w}}{\frac {\partial z}{\partial v}}+{\frac {\partial x}{\partial u}}{\frac {\partial y}{\partial v}}{\frac {\partial z}{\partial w}}-{\frac {\partial x}{\partial v}}{\frac {\partial y}{\partial u}}{\frac {\partial z}{\partial w}}\right|\Delta u\Delta v\Delta w&\quad {\text{dot product}}\\&=\left|{\frac {\partial x}{\partial u}}{\bigg (}{\frac {\partial y}{\partial v}}{\frac {\partial z}{\partial w}}-{\frac {\partial y}{\partial w}}{\frac {\partial z}{\partial v}}{\bigg )}+{\frac {\partial x}{\partial v}}{\bigg (}{\frac {\partial y}{\partial w}}{\frac {\partial z}{\partial u}}-{\frac {\partial y}{\partial u}}{\frac {\partial z}{\partial w}}{\bigg )}+{\frac {\partial x}{\partial w}}{\bigg (}{\frac {\partial y}{\partial u}}{\frac {\partial z}{\partial v}}-{\frac {\partial y}{\partial v}}{\frac {\partial z}{\partial u}}{\bigg )}\right|\Delta u\Delta v\Delta w&\quad {\text{rearrangement}}\\&={\begin{vmatrix}{\begin{vmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}&{\frac {\partial x}{\partial w}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}&{\frac {\partial y}{\partial w}}\\{\frac {\partial z}{\partial u}}&{\frac {\partial z}{\partial v}}&{\frac {\partial z}{\partial w}}\\\end{vmatrix}}\end{vmatrix}}\Delta u\Delta v\Delta w&\quad {\text{cross product}}\\\end{aligned}}}
因此, Δ V 1 Δ V 2 = | | ∂ x ∂ u ∂ x ∂ v ∂ x ∂ w ∂ y ∂ u ∂ y ∂ v ∂ y ∂ w ∂ z ∂ u ∂ z ∂ v ∂ z ∂ w | | Δ u Δ v Δ w Δ u Δ v Δ w = | | ∂ x ∂ u ∂ x ∂ v ∂ x ∂ w ∂ y ∂ u ∂ y ∂ v ∂ y ∂ w ∂ z ∂ u ∂ z ∂ v ∂ z ∂ w | | {\displaystyle {\frac {\Delta V_{1}}{\Delta V_{2}}}={\frac {{\begin{vmatrix}{\begin{vmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}&{\frac {\partial x}{\partial w}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}&{\frac {\partial y}{\partial w}}\\{\frac {\partial z}{\partial u}}&{\frac {\partial z}{\partial v}}&{\frac {\partial z}{\partial w}}\\\end{vmatrix}}\end{vmatrix}}\Delta u\Delta v\Delta w}{\Delta u\Delta v\Delta w}}={\begin{vmatrix}{\begin{vmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}&{\frac {\partial x}{\partial w}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}&{\frac {\partial y}{\partial w}}\\{\frac {\partial z}{\partial u}}&{\frac {\partial z}{\partial v}}&{\frac {\partial z}{\partial w}}\\\end{vmatrix}}\end{vmatrix}}} .
定义。 (三元变量的雅可比矩阵)由函数 x = x ( u , v , w ) , y = y ( u , v , w ) {\displaystyle x=x(u,v,w),y=y(u,v,w)} 和 z = z ( u , v , w ) {\displaystyle z=z(u,v,w)} 给出的变换 T {\displaystyle T} 的雅可比矩阵,其偏导数存在且连续,为 ∂ ( x , y , z ) ∂ ( u , v , w ) = | ∂ x ∂ u ∂ x ∂ v ∂ x ∂ w ∂ y ∂ u ∂ y ∂ v ∂ y ∂ w ∂ z ∂ u ∂ z ∂ v ∂ z ∂ w | {\displaystyle {\frac {\partial (x,y,z)}{\partial (u,v,w)}}={\begin{vmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}&{\frac {\partial x}{\partial w}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}&{\frac {\partial y}{\partial w}}\\{\frac {\partial z}{\partial u}}&{\frac {\partial z}{\partial v}}&{\frac {\partial z}{\partial w}}\\\end{vmatrix}}}
添加绝对值是为了防止出现负体积。
∭ R f ( x , y , z ) d V ≈ ∑ i = 1 m ∑ j = 1 n ∑ k = 1 p f ( x i , y j , z k ) Δ V ≈ ∑ i = 1 m ∑ j = 1 n ∑ k = 1 p f ( x ( u i , v j , w k ) , y ( u i , v j , w k ) , z ( u i , v j , w k ) ) Δ V 2 Since Δ V 2 ≈ | ∂ ( x , y , z ) ∂ ( u , v , w ) | Δ u Δ v Δ w ∑ i = 1 m ∑ j = 1 n ∑ k = 1 p f ( x ( u i , v j , w k ) , y ( u i , v j , w k ) , z ( u i , v j , w k ) ) Δ V 2 ≈ ∑ i = 1 m ∑ j = 1 n ∑ k = 1 p f ( x ( u i , v j , w k ) , y ( u i , v j , w k ) , z ( u i , v j , w k ) ) | ∂ ( x , y , z ) ∂ ( u , v , w ) | Δ u Δ v Δ w ≈ ∭ S f ( x ( u , v , w ) , y ( u , v , w ) , z ( u , v , w ) ) | ∂ ( x , y , z ) ∂ ( u , v , w ) | d u d v d w {\displaystyle {\begin{aligned}\iiint _{R}f(x,y,z)dV&\approx \sum _{i=1}^{m}\sum _{j=1}^{n}\sum _{k=1}^{p}f(x_{i},y_{j},z_{k})\Delta V\\&\approx \sum _{i=1}^{m}\sum _{j=1}^{n}\sum _{k=1}^{p}f(x(u_{i},v_{j},w_{k}),y(u_{i},v_{j},w_{k}),z(u_{i},v_{j},w_{k}))\Delta V_{2}\\{\text{Since }}&\Delta V_{2}\approx \left|{\frac {\partial (x,y,z)}{\partial (u,v,w)}}\right|\Delta u\Delta v\Delta w\\\sum _{i=1}^{m}\sum _{j=1}^{n}\sum _{k=1}^{p}f(x(u_{i},v_{j},w_{k}),y(u_{i},v_{j},w_{k}),z(u_{i},v_{j},w_{k}))\Delta V_{2}&\approx \sum _{i=1}^{m}\sum _{j=1}^{n}\sum _{k=1}^{p}f(x(u_{i},v_{j},w_{k}),y(u_{i},v_{j},w_{k}),z(u_{i},v_{j},w_{k}))\ \left|{\frac {\partial (x,y,z)}{\partial (u,v,w)}}\right|\Delta u\Delta v\Delta w\\&\approx \iiint _{S}f(x(u,v,w),y(u,v,w),z(u,v,w))\ \left|{\frac {\partial (x,y,z)}{\partial (u,v,w)}}\right|\ du\ dv\ dw\\\end{aligned}}}
然后,我们有以下定理,它类似于二重积分的定理。再次提醒,以上解释并非 该定理的证明。
定理。 (三重积分变量替换) 假设 T {\displaystyle T} 是一个 C 1 {\displaystyle C^{1}} 变换,其雅可比行列式不为零,并将 u v w {\displaystyle uvw} 空间中的区域 S {\displaystyle S} 单射映射到 x y z {\displaystyle xyz} 空间中的区域 R {\displaystyle R} ,通过变量替换 x = x ( u , v , w ) , y = y ( u , v , w ) {\displaystyle x=x(u,v,w),y=y(u,v,w)} 和 z = z ( u , v , w ) {\displaystyle z=z(u,v,w)} 。假设 f {\displaystyle f} 在 R {\displaystyle R} 上连续,我们有 ∭ R f ( x , y , z ) d x d y d z = ∭ S f ( x ( u , v , w ) , y ( u , v , w ) , z ( u , v , w ) ) | ∂ ( x , y , z ) ∂ ( u , v , w ) | d u d v d w {\displaystyle \iiint _{R}f(x,y,z)\,dx\,dy\,dz=\iiint _{S}f(x(u,v,w),y(u,v,w),z(u,v,w))\left|{\frac {\partial (x,y,z)}{\partial (u,v,w)}}\right|\,du\,dv\,dw}
备注.
d x d y d z {\displaystyle dx\,dy\,dz} 与 d V {\displaystyle dV} 意思相同。
如果我们改变一些记号,我们可以得到
∭ S f ( u ( x , y , z ) , v ( x , y , z ) , w ( x , y , z ) ) | ∂ ( u , v , w ) ∂ ( x , y , z ) | d x d y d z = ∭ R f ( u , v , w ) d u d v d w . {\displaystyle \iiint _{S}f(u(x,y,z),v(x,y,z),w(x,y,z))\left|{\frac {\partial (u,v,w)}{\partial (x,y,z)}}\right|\,dx\,dy\,dz=\iiint _{R}f(u,v,w)\,du\,dv\,dw.} ( T {\displaystyle T} 在这种情况下将 x y z {\displaystyle xyz} 空间中的区域 S {\displaystyle S} 映射到 u v w {\displaystyle uvw} 空间中的区域 R {\displaystyle R} 。在这种情况下。) 这可能是一种在某些情况下更方便使用的形式。
现在我们了解了雅可比矩阵的用途和推导,是时候应用这些新知识来解决一些例子了。前两个例子包括将坐标系从笛卡尔坐标系变换到极坐标系,以及将笛卡尔坐标系变换到球坐标系。
有时,我们可能将积分区域变换到其他坐标系中的另一个区域。这可以简化积分的计算,特别是在笛卡尔坐标系中的区域与圆形相关时,例如球体、圆锥体、圆形等。
让我们从将坐标系从笛卡尔坐标系变换到极坐标系开始。
命题。 (将笛卡尔坐标系转换为极坐标系进行二重积分)令 f ( x , y ) {\displaystyle f(x,y)} 是一个用 笛卡尔坐标 定义的连续函数,并令 g ( r , θ ) = f ( r cos θ , r sin θ ) {\displaystyle g(r,\theta )=f(r\cos \theta ,r\sin \theta )} 是用 极坐标 表示的相同 函数。假设极坐标系中的区域 S {\displaystyle S} 一一映射到笛卡尔坐标系中的区域 R {\displaystyle R} 。那么, ∬ R f ( x , y ) d x d y = ∬ S g ( r , θ ) r d r d θ . {\displaystyle \iint _{R}f(x,y)\,dx\,dy=\iint _{S}g(r,\theta ){\color {green}{r}}\,dr\,d\theta .}
证明。 如果我们从笛卡尔坐标系转换为极坐标系,则有关系 x = r cos θ and y = r sin θ . {\displaystyle x=r\cos \theta {\text{ and }}y=r\sin \theta .} 因此,雅可比行列式为 ∂ ( x , y ) ∂ ( r , θ ) = | ∂ x ∂ r ∂ x ∂ θ ∂ y ∂ r ∂ y ∂ θ | = | cos θ − r sin θ sin θ r cos θ | = r ( cos 2 θ + sin 2 θ ) = r . {\displaystyle {\frac {\partial (x,y)}{\partial (r,\theta )}}={\begin{vmatrix}{\frac {\partial x}{\partial r}}&{\frac {\partial x}{\partial \theta }}\\{\frac {\partial y}{\partial r}}&{\frac {\partial y}{\partial \theta }}\end{vmatrix}}={\begin{vmatrix}\cos \theta &-r\sin \theta \\\sin \theta &r\cos \theta \end{vmatrix}}=r\left(\cos ^{2}\theta +\sin ^{2}\theta \right)=r.} 根据二重积分变量替换定理, ∬ R f ( x , y ) d x d y = ∬ S f ( r cos θ , r sin θ ) | ∂ ( x , y ) ∂ ( r , θ ) | d r d θ = ∬ S g ( r , θ ) r d r d θ . {\displaystyle \iint _{R}f(x,y)\,dx\,dy=\iint _{S}f(r\cos \theta ,r\sin \theta )\left|{\frac {\partial (x,y)}{\partial (r,\theta )}}\right|\,dr\,d\theta =\iint _{S}g(r,\theta )r\,dr\,d\theta .} ◻ {\displaystyle \Box }
命题. (将笛卡尔坐标系转换为柱坐标系进行三重积分)令 f ( x , y , z ) {\displaystyle f(x,y,z)} 是一个用 笛卡尔坐标 定义的连续函数,令 g ( r , θ , z ) = f ( r cos θ , r sin θ , z ) {\displaystyle g(r,\theta ,z)=f(r\cos \theta ,r\sin \theta ,z)} 是用 柱坐标 表示的 相同 函数。假设柱坐标系中的区域 S {\displaystyle S} 单射映射到笛卡尔坐标系中的区域 R {\displaystyle R} 。那么, ∭ R f ( x , y , z ) d x d y d z = ∭ S g ( r , θ , z ) r d r d θ d z . {\displaystyle \iiint _{R}f(x,y,z)\,dx\,dy\,dz=\iiint _{S}g(r,\theta ,z){\color {green}{r}}\,dr\,d\theta \,dz.}
命题. (将笛卡尔坐标系转换为球坐标系进行三重积分)令 f ( x , y , z ) {\displaystyle f(x,y,z)} 是一个用 笛卡尔坐标 定义的连续函数,令 g ( ρ , ϕ , θ ) = f ( ρ sin ϕ cos θ , ρ sin ϕ sin θ , ρ cos ϕ ) {\displaystyle g(\rho ,\phi ,\theta )=f(\rho \sin \phi \cos \theta ,\rho \sin \phi \sin \theta ,\rho \cos \phi )} 是用 球坐标 表示的 相同 函数。假设球坐标系中的区域 S {\displaystyle S} 单射映射到笛卡尔坐标系中的区域 R {\displaystyle R} 。那么, ∭ R f ( x , y , z ) d x d y d z = ∭ S g ( ρ , ϕ , θ ) ρ 2 sin ϕ d ρ d ϕ d θ . {\displaystyle \iiint _{R}f(x,y,z)\,dx\,dy\,dz=\iiint _{S}g(\rho ,\phi ,\theta ){\color {green}{\rho ^{2}\sin \phi }}\,d\rho \,d\phi \,d\theta .}
证明。
萨鲁斯法则的示意图。红色箭头对应正项,蓝色箭头对应负项。
If we change from Cartesian coordinates to spherical coordinates, we have the relationships x = ρ sin ϕ cos θ , y = ρ sin ϕ sin θ and z = ρ cos ϕ . {\displaystyle x=\rho \sin \phi \cos \theta ,\,y=\rho \sin \phi \sin \theta \;{\text{and}}\;z=\rho \cos \phi .} Thus, the Jacobian is ∂ ( x , y , z ) ∂ ( ρ , ϕ , θ ) = | ∂ x ∂ ρ ∂ x ∂ ϕ ∂ x ∂ θ ∂ y ∂ ρ ∂ y ∂ ϕ ∂ y ∂ θ ∂ z ∂ ρ ∂ z ∂ ϕ ∂ z ∂ θ | = | sin ϕ cos θ ρ cos ϕ cos θ − ρ sin ϕ sin θ sin ϕ sin θ ρ cos ϕ sin θ ρ sin ϕ sin θ cos ϕ − ρ sin ϕ 0 | = 0 + ρ 2 sin ϕ cos 2 ϕ cos 2 θ + ρ 2 sin 3 ϕ sin 2 θ − ( − ρ 2 sin ϕ cos 2 ϕ sin 2 θ ) − ( − ρ 2 sin 3 ϕ cos 2 θ ) − 0 by Rule of Sarrus = ρ 2 sin ϕ cos 2 ϕ ( sin 2 θ + cos 2 θ ⏟ 1 ) + ρ 2 sin 3 ϕ ⏟ sin ϕ sin 2 ϕ ( sin 2 θ + cos 2 θ ⏟ 1 ) = ρ 2 sin ϕ ( cos 2 ϕ + sin 2 ϕ ⏟ 1 ) = ρ 2 sin ϕ . {\displaystyle {\begin{aligned}{\frac {\partial (x,y,z)}{\partial (\rho ,\phi ,\theta )}}&={\begin{vmatrix}{\frac {\partial x}{\partial \rho }}&{\frac {\partial x}{\partial \phi }}&{\frac {\partial x}{\partial \theta }}\\{\frac {\partial y}{\partial \rho }}&{\frac {\partial y}{\partial \phi }}&{\frac {\partial y}{\partial \theta }}\\{\frac {\partial z}{\partial \rho }}&{\frac {\partial z}{\partial \phi }}&{\frac {\partial z}{\partial \theta }}\\\end{vmatrix}}\\&={\begin{vmatrix}\sin \phi \cos \theta &\rho \cos \phi \cos \theta &-\rho \sin \phi \sin \theta \\\sin \phi \sin \theta &\rho \cos \phi \sin \theta &\rho \sin \phi \sin \theta \\\cos \phi &-\rho \sin \phi &0\end{vmatrix}}\\&=0{\color {purple}+\rho ^{2}\sin \phi \cos ^{2}\phi \cos ^{2}\theta }{\color {brown}+\rho ^{2}\sin ^{3}\phi \sin ^{2}\theta }{\color {purple}-(-\rho ^{2}\sin \phi \cos ^{2}\phi \sin ^{2}\theta )}{\color {brown}-(-\rho ^{2}\sin ^{3}\phi \cos ^{2}\theta )}-0\qquad {\text{by Rule of Sarrus}}\\&={\color {purple}\rho ^{2}\sin \phi \cos ^{2}\phi (\underbrace {\sin ^{2}\theta +\cos ^{2}\theta } _{1})}{\color {brown}+\rho ^{2}\underbrace {\sin ^{3}\phi } _{\sin \phi \sin ^{2}\phi }(\underbrace {\sin ^{2}\theta +\cos ^{2}\theta } _{1})}\\&=\rho ^{2}\sin \phi \left(\underbrace {{\color {purple}\cos ^{2}\phi }{\color {brown}+\sin ^{2}\phi }} _{1}\right)\\&=\rho ^{2}\sin \phi .\end{aligned}}} By the theorem about change of variables for triple integration, ∭ R f ( x , y , z ) d x d y d z = ∭ S f ( ρ sin ϕ cos θ , ρ sin ϕ sin θ , ρ cos ϕ ) | ∂ ( x , y , z ) ∂ ( ρ , ϕ , θ ) | d ρ d ϕ d θ = ∭ S g ( ρ , ϕ , θ ) ρ 2 ⏟ ≥ 0 sin ϕ ⏞ ≥ 0 since 0 ≤ ϕ ≤ π d ρ d ϕ d θ . {\displaystyle \iiint _{R}f(x,y,z)\,dx\,dy\,dz=\iiint _{S}f(\rho \sin \phi \cos \theta ,\rho \sin \phi \sin \theta ,\rho \cos \phi )\left|{\frac {\partial (x,y,z)}{\partial (\rho ,\phi ,\theta )}}\right|\,d\rho \,d\phi \,d\theta =\iiint _{S}g(\rho ,\phi ,\theta )\underbrace {\rho ^{2}} _{\geq 0}\overbrace {\sin \phi } ^{\geq 0\;{\text{since}}\;0\leq \phi \leq \pi }\,d\rho \,d\phi \,d\theta .} ◻ {\displaystyle \Box }
证明。
如果我们从笛卡尔坐标系变换到柱坐标系 ,则有如下关系 x = r cos θ , y = r sin θ and z = z . {\displaystyle x=r\cos \theta ,\,y=r\sin \theta \;{\text{and}}\;{\color {green}{z=z}}.} 因此,雅可比行列式为 ∂ ( x , y , z ) ∂ ( r , θ , z ) = | ∂ x ∂ r ∂ x ∂ θ ∂ x ∂ z ∂ y ∂ r ∂ y ∂ θ ∂ y ∂ z ∂ z ∂ r ∂ z ∂ θ ∂ z ∂ z | = | cos θ − r sin θ 0 sin θ r cos θ 0 0 0 1 | = 0 − 0 + | cos θ − r sin θ sin θ r cos θ | ⏟ by cofactor expansion along 3rd row = r . {\displaystyle {\frac {\partial (x,y,{\color {green}z})}{\partial (r,\theta ,{\color {green}z})}}={\begin{vmatrix}{\frac {\partial x}{\partial r}}&{\frac {\partial x}{\partial \theta }}&{\color {green}{\frac {\partial x}{\partial z}}}\\{\frac {\partial y}{\partial r}}&{\frac {\partial y}{\partial \theta }}&{\color {green}{\frac {\partial y}{\partial z}}}\\{\color {green}{\frac {\partial z}{\partial r}}}&{\color {green}{\frac {\partial z}{\partial \theta }}}&{\color {green}{\frac {\partial z}{\partial z}}}\end{vmatrix}}={\begin{vmatrix}\cos \theta &-r\sin \theta &{\color {green}{0}}\\\sin \theta &r\cos \theta &{\color {green}{0}}\\{\color {green}0}&{\color {green}0}&{\color {green}1}\end{vmatrix}}=\underbrace {0-0+{\begin{vmatrix}\cos \theta &-r\sin \theta \\\sin \theta &r\cos \theta \end{vmatrix}}} _{\text{by cofactor expansion along 3rd row}}=r.} 根据多元积分变量变换定理,对于三重 积分,有 ∭ R f ( x , y , z ) d x d y d z = ∭ S f ( r cos θ , r sin θ , z ) | ∂ ( x , y , z ) ∂ ( r , θ , z ) | d r d θ d z = ∭ S g ( r , θ , z ) r d r d θ d z . {\displaystyle \iiint _{R}f(x,y,{\color {green}z})\,dx\,dy\,{\color {green}dz}=\iiint _{S}f(r\cos \theta ,r\sin \theta ,{\color {green}z})\left|{\frac {\partial (x,y,{\color {green}z})}{\partial (r,\theta ,{\color {green}z})}}\right|\,dr\,d\theta \,{\color {green}dz}=\iiint _{S}g(r,\theta ,{\color {green}z})r\,dr\,d\theta \,{\color {green}dz}.} ◻ {\displaystyle \Box }
证明。
首先,将圆锥按提示放置。设圆锥在直角坐标系和柱坐标系中所包围的区域分别为 C {\displaystyle C} 和 C ′ {\displaystyle C'} 。然后,使用柱坐标系,根据关于使用柱坐标系的三重积分的命题和关于三重积分给出的体积的命题,所求体积为 ∭ C 1 d V = ∭ C ′ r d r d θ d z . {\displaystyle \iiint _{C}1\,dV=\iiint _{C'}r\,dr\,d\theta \,dz.} 接下来,我们需要在区域 C ′ {\displaystyle C'} 中找到 r , θ {\displaystyle r,\theta } 和 z {\displaystyle z} 的边界。
首先, θ {\displaystyle \theta } 的边界是 0 ≤ θ ≤ 2 π {\displaystyle 0\leq \theta \leq 2\pi } (根据柱坐标系的定义)。
Then, given a fixed θ {\displaystyle \theta } , we consider the corresponding r z {\displaystyle rz} -plane to see whether we can obtain any relationship between r {\displaystyle r} and z {\displaystyle z} . Since the region in the r z {\displaystyle rz} -plane (it is x z {\displaystyle xz} -plane in Cartesian coordinate system when θ = 0 {\displaystyle \theta =0} ) over which the integral is taken is the triangle with vertices ( 0 , 0 ) , ( 0 , h ) {\displaystyle (0,0),\,(0,h)} and ( a , 0 ) {\displaystyle (a,0)} , for which the equation of the region is z ≤ − h a r + h ⟹ z h ≤ − r a + 1 ⟹ r a + z h ≤ 1 {\displaystyle {\color {green}z}\leq {\frac {-h}{a}}{\color {green}r}+h\implies {\frac {\color {green}z}{h}}\leq -{\frac {\color {green}r}{a}}+1\implies {\frac {\color {green}r}{a}}+{\frac {\color {green}z}{h}}\leq 1} Therefore, given a fixed θ {\displaystyle \theta } r a ≤ r a + z h ⏟ ≥ 0 ≤ 1 ⟹ 0 ≤ ⏟ by definition r ≤ a , {\displaystyle {\frac {r}{a}}\leq {\frac {r}{a}}+\underbrace {\frac {z}{h}} _{\geq 0}\leq 1\implies \underbrace {0\leq } _{\text{by definition}}r\leq a,} (this shows that r {\displaystyle r} is actually independent from θ {\displaystyle \theta } .) and given fixed r , θ {\displaystyle r,\theta } , z h + r a ≤ 1 ⟹ 0 ≤ z ⏟ by cone ≤ h ( 1 − r a ) . {\displaystyle {\frac {z}{h}}+{\frac {r}{a}}\leq 1\implies \underbrace {0\leq z} _{\text{by cone}}\leq h\left(1-{\frac {r}{a}}\right).} (this shows that z {\displaystyle z} is actually independent from θ {\displaystyle \theta } .) Therefore, the desired volume is ∭ C ′ r d r d θ d z = ∫ 0 2 π ∫ 0 a ∫ 0 h ( 1 − r a ) r d z d r d θ by generalized Fubini's theorem for triple integration = ∫ 0 2 π ∫ 0 a r h ( 1 − r a ) d r d θ = ∫ 0 2 π [ h r 2 2 − h r 3 3 a ] r = 0 r = a d θ = h ∫ 0 2 π ( a 2 2 − a 3 2 3 a ⏟ a 2 / 6 ) d θ = ( 2 π ) a 2 6 = 1 3 π a 2 h {\displaystyle {\begin{aligned}\iiint _{C'}r\,dr\,d\theta \,dz&=\int _{0}^{2\pi }\int _{0}^{a}\int _{0}^{h\left(1-{\frac {r}{a}}\right)}r\,dz\,dr\,d\theta \qquad {\text{by generalized Fubini's theorem for triple integration}}\\&=\int _{0}^{2\pi }\int _{0}^{a}rh\left(1-{\frac {r}{a}}\right)\,dr\,d\theta \\&=\int _{0}^{2\pi }\left[{\frac {hr^{2}}{2}}-{\frac {hr^{3}}{3a}}\right]_{r=0}^{r=a}\,d\theta \\&=h\int _{0}^{2\pi }\left(\underbrace {{\frac {a^{2}}{2}}-{\frac {a^{{\cancel {3}}2}}{3{\cancel {a}}}}} _{a^{2}/6}\right)\,d\theta \\&={\frac {(2\pi )a^{2}}{6}}\\&={\frac {1}{3}}\pi a^{2}h\end{aligned}}} ◻ {\displaystyle \Box }
证明。
首先,将球体的中心置于原点。设 S {\displaystyle S} 和 S ′ {\displaystyle S'} 分别是在直角坐标系和球坐标系下由球面所包围的区域。利用 球面 坐标,根据球面坐标三重积分的命题,所求体积为 ∭ S 1 d V = ∭ S ′ ρ 2 sin ϕ d ρ d ϕ d θ . {\displaystyle \iiint _{S}1\,dV=\iiint _{S'}\rho ^{2}\sin \phi \,d\rho \,d\phi \,d\theta .} 由于 ρ , ϕ , θ {\displaystyle \rho ,\phi ,\theta } 的边界为 0 ≤ ρ ≤ r , 0 ≤ ϕ ≤ π {\displaystyle 0\leq \rho \leq r,\,0\leq \phi \leq \pi } 和 0 ≤ θ ≤ 2 π {\displaystyle 0\leq \theta \leq 2\pi } (根据球面坐标的定义)在区域 S ′ {\displaystyle S'} 中,所求体积为 ∭ S ′ ρ 2 sin ϕ d ρ d ϕ d θ = ∫ 0 2 π ∫ 0 π ∫ 0 r ρ 2 sin ϕ d ρ d ϕ d θ = 1 3 ∫ 0 2 π ∫ 0 π r 3 sin ϕ d ϕ d θ = 1 3 r 3 ∫ 0 2 π − ( cos ( π ) ⏟ − 1 − cos 0 ⏟ 1 ) ⏞ 2 d θ = 2 3 r 3 ( 2 π ) = 4 3 π r 3 . {\displaystyle {\begin{aligned}\iiint _{S'}\rho ^{2}\sin \phi \,d\rho \,d\phi \,d\theta &=\int _{0}^{2\pi }\int _{0}^{\pi }\int _{0}^{r}\rho ^{2}\sin \phi \,d\rho \,d\phi \,d\theta \\&={\frac {1}{3}}\int _{0}^{2\pi }\int _{0}^{\pi }r^{3}\sin \phi \,d\phi \,d\theta \\&={\frac {1}{3}}r^{3}\int _{0}^{2\pi }\overbrace {-(\underbrace {\cos(\pi )} _{-1}-\underbrace {\cos 0} _{1})} ^{2}\,d\theta \\&={\frac {2}{3}}r^{3}(2\pi )\\&={\frac {4}{3}}\pi r^{3}.\end{aligned}}}