区间划分图示 对于(黎曼)积分,我们考虑黎曼和。回想一下,在单变量情况下,我们将区间分成越来越多的子区间,它们的宽度越来越小,我们通过对每个子区间对应矩形的面积求和来对区间进行积分。对于多元变量情况,我们需要做类似的事情,但问题在于我们需要在       R     2      ,    R     3          {\displaystyle \mathbb {R} ^{2},\mathbb {R} ^{3}}           R     n          {\displaystyle \mathbb {R} ^{n}}          R        {\displaystyle \mathbb {R} }     区间 
在多元变量情况下,我们需要考虑的不只是'区间'本身(在多元变量情况下没有定义),而是       R     2          {\displaystyle \mathbb {R} ^{2}}     笛卡尔积       R     n          {\displaystyle \mathbb {R} ^{n}}     n 元笛卡尔积 
笛卡尔积示例图示。 
定义。 n  元笛卡尔积) 在     n      {\displaystyle n}          X   1      ,   X   2      ,  …  ,   X   n          {\displaystyle X_{1},X_{2},\ldots ,X_{n}}     n 元笛卡尔积      X   1      ×   X   2      ×  ⋯  ×   X   n      =  {  (   x   1      ,   x   2      ,  …  ,   x   n      )  :   x   i      ∈   X   i        for each     i  ∈  {  1  ,  2  ,  …  ,  n  }  }      {\displaystyle X_{1}\times X_{2}\times \cdots \times X_{n}=\{(x_{1},x_{2},\ldots ,x_{n}):x_{i}\in X_{i}{\text{ for each }}i\in \{1,2,\ldots ,n\}\}}         n      {\displaystyle n}     
 
备注。 
回想一下 区间     [  0  ,  1  ]  =   {   x  :  0  ≤  x  ≤  1    }        {\displaystyle [0,1]=\left\{x:0\leq x\leq 1\right\}}      
二元笛卡尔积简称为笛卡尔积,例如     [  0  ,  1  ]  ×  [  0  ,  2  ]  =  {  (   x   1      ,   x   2      )  :   x   1      ∈  [  0  ,  1  ]    and      x   2      ∈  [  0  ,  2  ]  }      {\displaystyle [0,1]\times [0,2]=\{(x_{1},x_{2}):x_{1}\in [0,1]{\text{ and }}x_{2}\in [0,2]\}}     笛卡尔积 矩形  
特殊情况         X  ×  X  ×  ⋯  X    ⏟       n   X  ′    s          {\displaystyle \underbrace {X\times X\times \cdots X} _{n\,X's}}     n 阶笛卡尔幂      X   n          {\displaystyle X^{n}}           R     3      =   R    ×   R    ×   R    =  {  (  x  ,  y  ,  z  )  :  x  ∈   R    ,  y  ∈   R      and     z  ∈   R    }      {\displaystyle \mathbb {R} ^{3}=\mathbb {R} \times \mathbb {R} \times \mathbb {R} =\{(x,y,z):x\in \mathbb {R} ,y\in \mathbb {R} {\text{ and }}z\in \mathbb {R} \}}      
面积(对于     n  =  2      {\displaystyle n=2}         n  =  3      {\displaystyle n=3}         n      {\displaystyle n}           R     2          {\displaystyle \mathbb {R} ^{2}}           R     3          {\displaystyle \mathbb {R} ^{3}}           R     n          {\displaystyle \mathbb {R} ^{n}}     
示例。 
    [  1  ,  2  ]  ×  [  3  ,  4  ]      {\displaystyle [1,2]\times [3,4]}           R     2          {\displaystyle \mathbb {R} ^{2}}         1      {\displaystyle 1}         [  1  ,  2  ]  ×  [    2      ,  10  ]  ×  [  −  π  ,  −  1  ]      {\displaystyle [1,2]\times [{\sqrt {2}},10]\times [-\pi ,-1]}           R     3          {\displaystyle \mathbb {R} ^{3}}         [  0.3  ,  1.7  ]  ×  [  0.3  ,  1.7  ]  ×  [  0.3  ,  1.7  ]  ×  [  0.3  ,  1.7  ]      {\displaystyle [0.3,1.7]\times [0.3,1.7]\times [0.3,1.7]\times [0.3,1.7]}         [  0.3.1.7   ]   4          {\displaystyle [0.3.1.7]^{4}}     四维立方体 ,位于       R     4          {\displaystyle \mathbb {R} ^{4}}      
现在,我们准备用与单积分类似的方式定义多重积分。为简便起见,我们先讨论二重积分,然后以类似的方式推广到多重积分。
将矩形划分为       R     2          {\displaystyle \mathbb {R} ^{2}}      
定义。     f  (  x  ,  y  )      {\displaystyle f(x,y)}           R     2          {\displaystyle \mathbb {R} ^{2}}         R      {\displaystyle R}         R      {\displaystyle R}         Δ   A   1      ,  Δ   A   2      ,  …  ,  Δ   A   n          {\displaystyle \Delta A_{1},\Delta A_{2},\ldots ,\Delta A_{n}}         k      {\displaystyle k}         (   x   k      ,   y   k      )      {\displaystyle (x_{k},y_{k})}          lim   Δ   A   k      →  0       ∑   k  =  1     n      f  (   x   k      ,   y   k      )  Δ   A   k          {\displaystyle \lim _{\Delta A_{k}\to 0}\sum _{k=1}^{n}f(x_{k},y_{k})\Delta A_{k}}         f      {\displaystyle f}         R      {\displaystyle R}     可积的      ∬   R      f  d  A      {\displaystyle \iint _{R}f\,dA}         A      {\displaystyle A}         f      {\displaystyle f}         R      {\displaystyle R}     二重积分 
 
二重积分的物理意义是计算体积。
我们还介绍一些二重积分的性质,以简化二重积分的计算。
命题。     f  (  x  ,  y  )      {\displaystyle f(x,y)}         g  (  x  ,  y  )      {\displaystyle g(x,y)}           R     2          {\displaystyle \mathbb {R} ^{2}}         R      {\displaystyle R}     可积 
(线性)     a  f  +  b  g      {\displaystyle af+bg}         R      {\displaystyle R}         a      {\displaystyle a}         b      {\displaystyle b}          ∬   R      (  a  f  +  b  g  )  d  A  =  a   ∬   R      f  d  A  +  b   ∬   R      g  d  A      {\displaystyle \iint _{R}(af+bg)\,dA=a\iint _{R}f\,dA+b\iint _{R}g\,dA}      
(单调性) 如果对于每个     (  x  ,  y  )  ∈  R      {\displaystyle (x,y)\in R}         f  (  x  ,  y  )  ≤  g  (  x  ,  y  )      {\displaystyle f(x,y)\leq g(x,y)}          ∬   R      f  d  A  ≤   ∬   R      g  d  A      {\displaystyle \iint _{R}f\,dA\leq \iint _{R}g\,dA}      
(三角不等式)      |    f   |        {\displaystyle |f|}         R      {\displaystyle R}          |    ∬   R      f  d  A    |    ≤   ∬   R       |    f   |    d  A      {\displaystyle \left|\iint _{R}f\,dA\right|\leq \iint _{R}|f|\,dA}       
注. 
 
值得庆幸的是,我们并不总是需要使用黎曼和来计算多变量积分。有一些结果可以使我们的生活更轻松。在陈述结果之前,我们需要定义 重复积分 
定义.     f  (  x  ,  y  )      {\displaystyle f(x,y)}         [  a  ,  b  ]  ×  [  c  ,  d  ]      {\displaystyle [a,b]\times [c,d]}         [  a  ,  b  ]  ×  [  c  ,  d  ]      {\displaystyle [a,b]\times [c,d]}           R     2          {\displaystyle \mathbb {R} ^{2}}          ∫   a     b       ∫   c     d      f  (  x  ,  y  )  d  y  d  x  =   ∫   a     b       (    ∫   c     d      f  (  x  ,  y  )  d  y    )    d  x      {\displaystyle \int _{a}^{b}\int _{c}^{d}f(x,y)\,dy\,dx=\int _{a}^{b}\left(\int _{c}^{d}f(x,y)\,dy\right)dx}          ∫   c     d       ∫   a     b      f  (  x  ,  y  )  d  x  d  y  =   ∫   c     d       (    ∫   a     b      f  (  x  ,  y  )  d  x    )    d  y      {\displaystyle \int _{c}^{d}\int _{a}^{b}f(x,y)\,dx\,dy=\int _{c}^{d}\left(\int _{a}^{b}f(x,y)\,dx\right)dy}     
 
计算逐次积分通常比使用黎曼和直接计算二重积分容易得多。 所以,如果我们能找到逐次积分和二重积分之间的关系,以便借助逐次积分来计算二重积分,那就太好了。 事实上,确实如此,以下定理是逐次积分和二重积分之间的桥梁。 
定理.     f  (  x  ,  y  )      {\displaystyle f(x,y)}         R  =  [  a  ,  b  ]  ×  [  c  ,  d  ]      {\displaystyle R=[a,b]\times [c,d]}         R  =  [  a  ,  b  ]  ×  [  c  ,  d  ]      {\displaystyle R=[a,b]\times [c,d]}           R     2          {\displaystyle \mathbb {R} ^{2}}          ∬   R      f  d  A  =   ∫   a     b       ∫   c     d      f  (  x  ,  y  )  d  y  d  x  =   ∫   c     d       ∫   a     b      f  (  x  ,  y  )  d  x  d  y  .      {\displaystyle \iint _{R}f\,dA=\int _{a}^{b}\int _{c}^{d}f(x,y)\,dy\,dx=\int _{c}^{d}\int _{a}^{b}f(x,y)\,dx\,dy.}     
 
备注。 
也就是说,我们可以使用 任何  
需要注意的是,在改变积分顺序后,每个积分的积分限也会发生变化  
证明。 
(i) 因为对于每个     (  x  ,  y  )  ∈  [  0  ,  2  ]  ×  [  0  ,  3  ]      {\displaystyle (x,y)\in [0,2]\times [0,3]}         z  =  4  >  0      {\displaystyle z=4>0}          ∬   [  0  ,  2  ]  ×  [  0  ,  3  ]      4  d  A      {\displaystyle \iint _{[0,2]\times [0,3]}4\,\,dA}          ∫   0     2       ∫   0     3      4  d  y  d  x  =  4   ∫   0     2       ∫   0     3      d  y  d  x  =  4   ∫   0     2      (  3  −  0  )  d  x  =  4  (  3  (  2  )  −  3  (  0  )  )  =  24.      {\displaystyle \int _{0}^{2}\int _{0}^{3}4\,dy\,dx=4\int _{0}^{2}\int _{0}^{3}\,dy\,dx=4\int _{0}^{2}(3-0)\,dx=4(3(2)-3(0))=24.}     
备注。     2  (  3  )  (  4  )  =  24      {\displaystyle 2(3)(4)=24}     
(ii) 所需体积由      ∬   [  0  ,  ℓ  ]  ×  [  0  ,  w  ]      h  d  x  d  y      {\displaystyle \iint _{[0,\ell ]\times [0,w]}h\,dx\,dy}         z  =  h      {\displaystyle z=h}         [  0  ,  ℓ  ]  ×  [  0  ,  w  ]      {\displaystyle [0,\ell ]\times [0,w]}         ℓ      {\displaystyle \ell }         w      {\displaystyle w}          ∬   [  0  ,  ℓ  ]  ×  [  0  ,  w  ]      h  d  y  d  x      {\displaystyle \iint _{[0,\ell ]\times [0,w]}h\,dy\,dx}          ∬   [  0  ,  ℓ  ]  ×  [  0  ,  w  ]      h  d  x  d  y  =   ∫   0     ℓ       ∫   0     w      h  d  y  d  x  =  h   ∫   0     ℓ       ∫   0     w      d  y  d  x  =  h   ∫   0     ℓ      w  d  x  =  ℓ  w  h  .      {\displaystyle \iint _{[0,\ell ]\times [0,w]}h\,dx\,dy=\int _{0}^{\ell }\int _{0}^{w}h\,dy\,dx=h\int _{0}^{\ell }\int _{0}^{w}\,dy\,dx=h\int _{0}^{\ell }w\,dx=\ell wh.}         ◻      {\displaystyle \Box }     
 
 
我们已经定义了在       R     2          {\displaystyle \mathbb {R} ^{2}}      。但是,我们经常想要计算在除了矩形之外形状的区域上的二重积分,例如圆形、三角形等等。因此,我们将讨论一种方法,在不改变二重积分定义的情况下,对更一般的区域进行二重积分计算。
考虑一个函数     f  :  D  →   R        {\displaystyle f:D\to \mathbb {R} }         D  ⊆    R     2          {\displaystyle D\subseteq \mathbb {R} ^{2}}         D      {\displaystyle D}         R      {\displaystyle R}     包含     D      {\displaystyle D}         R      {\displaystyle R}         R  ⊇  D      {\displaystyle R\supseteq D}         f  (  x  ,  y  )  =  0      {\displaystyle f(x,y)=0}         (  x  ,  y  )  ∈  R      {\displaystyle (x,y)\in R}     外部     D      {\displaystyle D}         (  x  ,  y  )  ∈  R  ∖  D      {\displaystyle (x,y)\in R\setminus D}     不会     f      {\displaystyle f}         D      {\displaystyle D}     
定义.     f  (  x  ,  y  )      {\displaystyle f(x,y)}         D  ⊆  R  ⊆    R     2          {\displaystyle D\subseteq R\subseteq \mathbb {R} ^{2}}         f  (  x  ,  y  )  =  0      {\displaystyle f(x,y)=0}         D      {\displaystyle D}         (  x  ,  y  )  ∈  R      {\displaystyle (x,y)\in R}         (  x  ,  y  )  ∈  R  ∖  D      {\displaystyle (x,y)\in R\setminus D}         f      {\displaystyle f}         D      {\displaystyle D}     二重积分      ∬   D      f  d  A  =   ∬   R      f  d  A      {\displaystyle \iint _{D}f\,dA=\iint _{R}f\,dA}     
 
注. 
 
然而,这种计算方法(通过计算黎曼和)通常非常困难,我们通常使用傅比尼定理的推广版本来计算这些积分。这将在下面讨论。
定理.     f  (  x  ,  y  )      {\displaystyle f(x,y)}         D      {\displaystyle D}     
(i) 如果     D  =  {  (  x  ,  y  )  :  a  ≤  x  ≤  b    and      g   1      (  x  )  ≤  y  ≤   h   1      (  x  )  }      {\displaystyle D=\{(x,y):a\leq x\leq b{\text{ and }}g_{1}(x)\leq y\leq h_{1}(x)\}}          g   1          {\displaystyle g_{1}}          h   1          {\displaystyle h_{1}}          ∬   D      f  d  A  =   ∫   a     b       ∫    g   1      (  x  )      h   1      (  x  )      f  (  x  ,  y  )  d  y  d  x  .      {\displaystyle \iint _{D}f\,dA=\int _{a}^{b}\int _{g_{1}(x)}^{h_{1}(x)}f(x,y)\,dy\,dx.}         D  =  {  (  x  ,  y  )  :  c  ≤  y  ≤  d    and      g   2      (  y  )  ≤  x  ≤   h   2      (  y  )  }      {\displaystyle D=\{(x,y):c\leq y\leq d{\text{ and }}g_{2}(y)\leq x\leq h_{2}(y)\}}          g   2          {\displaystyle g_{2}}          h   2          {\displaystyle h_{2}}          ∬   D      f  d  A  =   ∫   c     d       ∫    g   2      (  y  )      h   2      (  y  )      f  (  x  ,  y  )  d  x  d  y  .      {\displaystyle \iint _{D}f\,dA=\int _{c}^{d}\int _{g_{2}(y)}^{h_{2}(y)}f(x,y)\,dx\,dy.}         a  ,  b  ,  c  ,  d      {\displaystyle a,b,c,d}     
 
证明。 Fubini 定理(非泛化版本)  和应用 一般区域上的二重积分定义  来证明这个定理。(我们可以使用 Fubini 定理,因为我们假设函数     g      {\displaystyle g}         h      {\displaystyle h}     
部分 (i):(    D  =  {  (  x  ,  y  )  :  a  ≤  x  ≤  b    and     g  (  x  )  ≤  y  ≤  h  (  x  )  }      {\displaystyle D=\{(x,y):a\leq x\leq b{\text{ and }}g(x)\leq y\leq h(x)\}}     
取任意矩形     R  =  [  a  ,  b  ]  ×  [  c  ,  d  ]      {\displaystyle R=[a,b]\times [c,d]}         D      {\displaystyle D}         c  ≤  g  (  x  )      {\displaystyle c\leq g(x)}         d  ≥  h  (  x  )      {\displaystyle d\geq h(x)}         f  (  x  ,  y  )  =  0      {\displaystyle f(x,y)=0}         (  x  ,  y  )  ∈  R  ∖  D      {\displaystyle (x,y)\in R\setminus D}          ∬   D      f  d  A    =   def        ∬   R      f  d  A  =   ∫   a     b       ∫   c     d      f  (  x  ,  y  )  d  y  d  x  =   ∫   a     b       (        ∫   c     g  (  x  )      f  (  x  ,  y  )  d  y    ⏟       0    because     y  <  (    or     ≤  )  g  (  x  )      +   ∫   g  (  x  )     h  (  x  )      f  (  x  ,  y  )  d  y  +       ∫   h  (  x  )     d      f  (  x  ,  y  )  d  y    ⏟       0    because     y  >  (    or     ≥  )  h  (  x  )        )    d  x  .      {\displaystyle \iint _{D}f\,dA{\overset {\text{ def }}{=}}\iint _{R}f\,dA=\int _{a}^{b}\int _{c}^{d}f(x,y)\,dy\,dx=\int _{a}^{b}\left(\underbrace {\int _{c}^{g(x)}f(x,y)\,dy} _{0{\text{ because }}y<({\text{ or }}\leq )g(x)}+\int _{g(x)}^{h(x)}f(x,y)\,dy+\underbrace {\int _{h(x)}^{d}f(x,y)\,dy} _{0{\text{ because }}y>({\text{ or }}\geq )h(x)}\right)dx.}     
部分 (ii):(    D  =  {  (  x  ,  y  )  :  c  ≤  y  ≤  d    and     g  (  x  )  ≤  x  ≤  h  (  x  )  }      {\displaystyle D=\{(x,y):c\leq y\leq d{\text{ and }}g(x)\leq x\leq h(x)\}}     
类似地,取任意矩形     R  =  [  a  ,  b  ]  ×  [  c  ,  d  ]      {\displaystyle R=[a,b]\times [c,d]}         D      {\displaystyle D}         a  ≤  g  (  x  )      {\displaystyle a\leq g(x)}         b  ≥  h  (  x  )      {\displaystyle b\geq h(x)}         f  (  x  ,  y  )  =  0      {\displaystyle f(x,y)=0}         (  x  ,  y  )  ∈  R  ∖  D      {\displaystyle (x,y)\in R\setminus D}          ∬   D      f  d  A    =   def        ∬   R      f  d  A  =   ∫   c     d       ∫   a     b      f  (  x  ,  y  )  d  x  d  y  =   ∫   c     d       (        ∫   a     g  (  x  )      f  (  x  ,  y  )  d  x    ⏟       0    because     x  <  (    or     ≤  )  g  (  x  )      +   ∫   g  (  x  )     h  (  x  )      f  (  x  ,  y  )  d  x  +       ∫   h  (  x  )     b      f  (  x  ,  y  )  d  x    ⏟       0    because     x  >  (    or     ≥  )  h  (  x  )        )    d  x  .      {\displaystyle \iint _{D}f\,dA{\overset {\text{ def }}{=}}\iint _{R}f\,dA=\int _{c}^{d}\int _{a}^{b}f(x,y)\,dx\,dy=\int _{c}^{d}\left(\underbrace {\int _{a}^{g(x)}f(x,y)\,dx} _{0{\text{ because }}x<({\text{ or }}\leq )g(x)}+\int _{g(x)}^{h(x)}f(x,y)\,dx+\underbrace {\int _{h(x)}^{b}f(x,y)\,dx} _{0{\text{ because }}x>({\text{ or }}\geq )h(x)}\right)dx.}         ◻      {\displaystyle \Box }     
 
备注。     x      {\displaystyle x}         y      {\displaystyle y}     
 
示例。     D      {\displaystyle D}           R     2          {\displaystyle \mathbb {R} ^{2}}         (  0  ,  0  )  ,  (  0  ,  1  )      {\displaystyle (0,0),(0,1)}         (  1  ,  0  )      {\displaystyle (1,0)}          ∬   D      x   y   2      d  A  =    1  60          {\displaystyle \iint _{D}xy^{2}\,\,dA={\frac {1}{60}}}     
 
证明。 
方法 1 的示意图 方法 2 的示意图 Approach 1: The bound for     x      {\displaystyle x}         0  ≤  x  ≤  1      {\displaystyle 0\leq x\leq 1}         x      {\displaystyle x}         y      {\displaystyle y}         0  ≤  y  ≤  1  −  x      {\displaystyle 0\leq y\leq 1-x}              ∫   0     1       ∫   0     1  −  x      x   y   2      d  y  d  x     =   ∫   0     1        [     1  3       y   3      x    ]     y  =  0     y  =  1  −  x      d  x        =    1  3       ∫   0     1      x  (  1  −  x   )   3      d  x        =    1  3       ∫   0     1       (   x  −  3   x   2      +  3   x   3      −   x   4        )    d  x        =    1  3       (     1  2      −  1  +    3  4      −    1  5        )          =    1  60      .              {\displaystyle {\begin{aligned}\int _{0}^{1}\int _{0}^{1-x}xy^{2}\,dy\,dx&=\int _{0}^{1}\left[{\frac {1}{3}}y^{3}x\right]_{y=0}^{y=1-x}\,dx\\&={\frac {1}{3}}\int _{0}^{1}x(1-x)^{3}\,dx\\&={\frac {1}{3}}\int _{0}^{1}\left(x-3x^{2}+3x^{3}-x^{4}\right)\,dx\\&={\frac {1}{3}}\left({\frac {1}{2}}-1+{\frac {3}{4}}-{\frac {1}{5}}\right)\\&={\frac {1}{60}}.\end{aligned}}}         y      {\displaystyle y}         0  ≤  y  ≤  1      {\displaystyle 0\leq y\leq 1}         y      {\displaystyle y}         x      {\displaystyle x}         0  ≤  x  ≤  1  −  y      {\displaystyle 0\leq x\leq 1-y}              ∫   0     1       ∫   0     1  −  y      x   y   2      d  x  d  y     =   ∫   0     1        [     1  2       x   2       y   2        ]     x  =  0     x  =  1  −  y      d  y        =   ∫   0     1        1  2      (  1  −  y   )   2       y   2      d  y        =    1  2       ∫   0     1       (    y   2      −  2   y   3      +   y   4        )    d  y        =    1  2       (     1  3      −    2  4      +    1  5        )          =    1  60      .              {\displaystyle {\begin{aligned}\int _{0}^{1}\int _{0}^{1-y}xy^{2}\,dx\,dy&=\int _{0}^{1}\left[{\frac {1}{2}}x^{2}y^{2}\right]_{x=0}^{x=1-y}\,dy\\&=\int _{0}^{1}{\frac {1}{2}}(1-y)^{2}y^{2}\,dy\\&={\frac {1}{2}}\int _{0}^{1}\left(y^{2}-2y^{3}+y^{4}\right)\,dy\\&={\frac {1}{2}}\left({\frac {1}{3}}-{\frac {2}{4}}+{\frac {1}{5}}\right)\\&={\frac {1}{60}}.\end{aligned}}}         ◻      {\displaystyle \Box }     
 
 
示例。       R     3          {\displaystyle \mathbb {R} ^{3}}         (  0  ,  0  ,  0  )  ,  (  a  ,  0  ,  0  )  ,  (  0  ,  b  ,  0  )      {\displaystyle (0,0,0),(a,0,0),(0,b,0)}         (  0  ,  0  ,  c  )      {\displaystyle (0,0,c)}         a  ,  b      {\displaystyle a,b}         c      {\displaystyle c}          a    =  (  a  ,  0  ,  0  )  ,   b    =  (  0  ,  b  ,  0  )      {\displaystyle \mathbf {a} =(a,0,0),\mathbf {b} =(0,b,0)}          c    =  (  0  ,  0  ,  c  )      {\displaystyle \mathbf {c} =(0,0,c)}           1  6      (   a    ⋅  (   b    ×   c    )  )      {\displaystyle {\frac {1}{6}}(\mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} ))}           1  6          {\displaystyle {\frac {1}{6}}}          a    ,   b        {\displaystyle \mathbf {a} ,\mathbf {b} }          c        {\displaystyle \mathbf {c} }     
 
证明。 
用二重积分求四面体体积的示意图 Let the plane containing     (  a  ,  0  ,  0  )  ,  (  0  ,  b  ,  0  )      {\displaystyle (a,0,0),(0,b,0)}         (  0  ,  0  ,  c  )      {\displaystyle (0,0,c)}         Π      {\displaystyle \Pi }         Π      {\displaystyle \Pi }         Π      {\displaystyle \Pi }         [  (  a  ,  0  ,  0  )  −  (  0  ,  0  ,  c  )  ]  ×  [  (  0  ,  b  ,  0  )  −  (  0  ,  0  ,  c  )  ]  =  (  a  ,  0  ,  −  c  )  ×  (  0  ,  b  ,  −  c  )  =    |      i        j        k          a     0     −  c        0     b     −  c        |      =  (  b  c  ,  a  c  ,  a  b  )  .      {\displaystyle [(a,0,0)-(0,0,c)]\times [(0,b,0)-(0,0,c)]=(a,0,-c)\times (0,b,-c)={\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\a&0&-c\\0&b&-c\end{vmatrix}}=(bc,ac,ab).}         Π      {\displaystyle \Pi }             b  c  (  x  −  a  )  +  a  c  (  y  −  0  )  +  a  b  (  z  −  0  )     =  0        ⇒     b  c  x  −  a  b  c  +  a  c  y  +  a  b  z     =  0        ⇒        b  c  x     a  b  c        −     a  b  c     a  b  c        +     a  c  y     a  b  c        +     a  b  z     a  b  c           =  0        ⇒       x  a      +    y  b      +    z  c         =  1        ⇒     z     =  c   (   1  −    x  a      −    y  b        )    .              {\displaystyle {\begin{aligned}&&bc(x-a)+ac(y-0)+ab(z-0)&=0\\&\Rightarrow &bcx-abc+acy+abz&=0\\&\Rightarrow &{\frac {bcx}{abc}}-{\frac {abc}{abc}}+{\frac {acy}{abc}}+{\frac {abz}{abc}}&=0\\&\Rightarrow &{\frac {x}{a}}+{\frac {y}{b}}+{\frac {z}{c}}&=1\\&\Rightarrow &z&=c\left(1-{\frac {x}{a}}-{\frac {y}{b}}\right).\end{aligned}}}         f  (  x  ,  y  )  =  c   (   1  −    x  a      −    y  b        )        {\displaystyle f(x,y)=c\left(1-{\frac {x}{a}}-{\frac {y}{b}}\right)}         D      {\displaystyle D}         D      {\displaystyle D}         (  0  ,  0  )  ,  (  a  ,  0  )  ,  (  0  ,  b  )      {\displaystyle (0,0),(a,0),(0,b)}           R     2          {\displaystyle \mathbb {R} ^{2}}         (  a  ,  0  )      {\displaystyle (a,0)}         (  0  ,  b  )      {\displaystyle (0,b)}         y  =  b   (   1  −    x  a        )        {\displaystyle y=b\left(1-{\frac {x}{a}}\right)}         x      {\displaystyle x}         0  ≤  x  ≤  a      {\displaystyle 0\leq x\leq a}         y      {\displaystyle y}         0  ≤  y  ≤  b   (   1  −    x  a        )        {\displaystyle 0\leq y\leq b\left(1-{\frac {x}{a}}\right)}         x      {\displaystyle x}              ∫   0     a       ∫   0     b   (   1  −    x  a        )            c   (   1  −    x  a      −    y  b        )      ⏟        Equation of     Π      d  y  d  x     =  c   ∫   0     a       (    (   1  −    x  a        )     (   b   (   1  −    x  a        )      )    −      b   2        (   1  −    x  a        )     2         2  b          )    d  x        =  c   ∫   0     a       (   b    (   1  −    x  a        )     2      −    b  2        (   1  −    x  a        )     2        )    d  x        =  c   ∫   0     a       (     b  2        (   1  −    x  a        )     2        )    d  x        =     b  c    2       ∫   0     a       (   1  −     2  x    a      +     x   2       a   2            )    d  x        =     b  c    2       (   a  −     a   2      a      +     a   3       3   a   2              )          =     b  c    2       (   a  −  a  +    a  3        )          =     a  b  c    6      .              {\displaystyle {\begin{aligned}\int _{0}^{a}\int _{0}^{b\left(1-{\frac {x}{a}}\right)}\underbrace {c\left(1-{\frac {x}{a}}-{\frac {y}{b}}\right)} _{{\text{Equation of }}\Pi }\,dy\,dx&=c\int _{0}^{a}\left(\left(1-{\frac {x}{a}}\right)\left(b\left(1-{\frac {x}{a}}\right)\right)-{\frac {b^{2}\left(1-{\frac {x}{a}}\right)^{2}}{2b}}\right)\,dx\\&=c\int _{0}^{a}\left(b\left(1-{\frac {x}{a}}\right)^{2}-{\frac {b}{2}}\left(1-{\frac {x}{a}}\right)^{2}\right)\,dx\\&=c\int _{0}^{a}\left({\frac {b}{2}}\left(1-{\frac {x}{a}}\right)^{2}\right)\,dx\\&={\frac {bc}{2}}\int _{0}^{a}\left(1-{\frac {2x}{a}}+{\frac {x^{2}}{a^{2}}}\right)\,dx\\&={\frac {bc}{2}}\left(a-{\frac {a^{2}}{a}}+{\frac {a^{3}}{3a^{2}}}\right)\\&={\frac {bc}{2}}\left(a-a+{\frac {a}{3}}\right)\\&={\frac {abc}{6}}.\end{aligned}}}           1  6      (   a    ⋅  (   b    ×   c    )  )  =    1  6       (   (  a  ,  0  ,  0  )  ⋅    |      i        j        k          0     b     0        0     0     c        |        )    =    1  6      (  (  a  ,  0  ,  0  )  ⋅  (  b  c  ,  0  ,  0  )  )  =     a  b  c    6          {\displaystyle {\frac {1}{6}}(\mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} ))={\frac {1}{6}}\left((a,0,0)\cdot {\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\0&b&0\\0&0&c\end{vmatrix}}\right)={\frac {1}{6}}((a,0,0)\cdot (bc,0,0))={\frac {abc}{6}}}         ◻      {\displaystyle \Box }     
 
 
示例。      ∫   0     16       ∫    x   1   /    4         2        1   1  +   y   5            d  y  d  x      {\displaystyle \int _{0}^{16}\int _{x^{1/4}}^{2}{\frac {1}{1+y^{5}}}\,dy\,dx}         0.70      {\displaystyle 0.70}     
 
备注。 
在     R        {\displaystyle \mathbb {R} }          ∫   [  0  ,  2  ]      f  d  x  =   ∫   [  0  ,  1  ]      f  d  x  +   ∫   [  1  ,  2  ]      f  d  x      {\displaystyle \int _{[0,2]}fdx=\int _{[0,1]}fdx+\int _{[1,2]}fdx}         [  0  ,  1  ]      {\displaystyle [0,1]}         [  1  ,  2  ]      {\displaystyle [1,2]}     零长度  
曲线 点       R     2          {\displaystyle \mathbb {R} ^{2}}      
备注。 
 
证明。 
Solving     y  =     r   2      −   x   2              {\displaystyle y={\sqrt {r^{2}-x^{2}}}}         y  =  −     r   2      −   x   2              {\displaystyle y=-{\sqrt {r^{2}-x^{2}}}}            r   2      −   x   2          =  −     r   2      −   x   2          ⟹     r   2      −   x   2          =  0  ⟹  x  =  ±  r      {\displaystyle {\sqrt {r^{2}-x^{2}}}=-{\sqrt {r^{2}-x^{2}}}\implies {\sqrt {r^{2}-x^{2}}}=0\implies x=\pm r}         x  =  ±  r  ⟹  y  =  0      {\displaystyle x=\pm r\implies y=0}         (    r      ,  0  )      {\displaystyle ({\sqrt {r}},0)}         (  −    r      ,  0  )      {\displaystyle (-{\sqrt {r}},0)}         x      {\displaystyle x}         −    r      ≤  x  ≤    r          {\displaystyle -{\sqrt {r}}\leq x\leq {\sqrt {r}}}         x      {\displaystyle x}         y      {\displaystyle y}         −     r   2      −   x   2          ≤  y  ≤     r   2      −   x   2              {\displaystyle -{\sqrt {r^{2}-x^{2}}}\leq y\leq {\sqrt {r^{2}-x^{2}}}}              ∬   D      1  d  A     =   ∫   −  r     r       ∫   −     r   2      −   x   2               r   2      −   x   2            1  d  y  d  x        =  2   ∫   −  r     r         r   2      −   x   2          d  x        =  2   ∫   arcsin    (  −  r   /    r  )     arcsin    (  r   /    r  )      r  cos    θ     r   2      −   r   2       sin   2        θ      d  θ   let     x  =  r  sin    θ  ⟹  d  x  =  r  cos    θ  d  θ    and     θ  =  arcsin    (  x   /    r  )        =  2  r   ∫       arcsin    (  −  1  )    ⏟       −  π   /    2             arcsin    1    ⏞       π   /    2          cos    θ       r   2        ⏟       =   |    r   |    =  r    because     r  >  0      cos    θ  d  θ        =  2   r   2       ∫   −  π   /    2     π   /    2         1  +  cos    (  2  θ  )    2      d  θ   by double angle formula:    cos    (  2  θ  )  =  2   cos   2        θ  −  1  ⟹   cos   2        θ  =     1  +  cos    (  2  θ  )    2            =     2   r   2        2       [     θ  2      +     sin    2  (  θ  )    4        ]          =     2   r   2        2       (     π  2      +    1  4      ⋅      sin    (  2  (  π   /    2  )  )    ⏟       =  sin    π  =  0      −   (   −    π  2      +    1  4      ⋅      sin    (  2  (  −  π   /    2  )  )    ⏟       =  sin    (  −  π  )  =  0        )      )          =  π   r   2                  {\displaystyle {\begin{aligned}\iint _{D}1\,dA&=\int _{-r}^{r}\int _{-{\sqrt {r^{2}-x^{2}}}}^{\sqrt {r^{2}-x^{2}}}1\,dy\,dx\\&=2\int _{-r}^{r}{\sqrt {r^{2}-x^{2}}}\,dx\\&=2\int _{\arcsin(-r/r)}^{\arcsin(r/r)}r\cos \theta {\sqrt {r^{2}-r^{2}\sin ^{2}\theta }}\,d\theta \qquad {\text{let }}x=r\sin \theta \implies dx=r\cos \theta \,d\theta {\text{ and }}\theta =\arcsin(x/r)\\&=2r\int _{\underbrace {\arcsin(-1)} _{-\pi /2}}^{\overbrace {\arcsin 1} ^{\pi /2}}\cos \theta \underbrace {\sqrt {r^{2}}} _{=|r|=r{\text{ because }}r>0}\cos \theta \,d\theta \\&=2r^{2}\int _{-\pi /2}^{\pi /2}{\frac {1+\cos(2\theta )}{2}}\,d\theta \qquad {\text{by double angle formula:}}\cos(2\theta )=2\cos ^{2}\theta -1\implies \cos ^{2}\theta ={\frac {1+\cos(2\theta )}{2}}\\&={\frac {2r^{2}}{2}}\left[{\frac {\theta }{2}}+{\frac {\sin 2(\theta )}{4}}\right]\\&={\frac {2r^{2}}{2}}\left({\frac {\pi }{2}}+{\frac {1}{4}}\cdot \underbrace {\sin(2(\pi /2))} _{=\sin \pi =0}-\left(-{\frac {\pi }{2}}+{\frac {1}{4}}\cdot \underbrace {\sin(2(-\pi /2))} _{=\sin(-\pi )=0}\right)\right)\\&=\pi r^{2}\end{aligned}}}         ◻      {\displaystyle \Box }     Remark.     D      {\displaystyle D}     disk  (region in a plane bounded by a circle) of radius     r      {\displaystyle r}     
 
 
二重积分部分 中的概念可以类推应用到 三重积分 
定义。     f  (  x  ,  y  ,  z  )      {\displaystyle f(x,y,z)}           R     3          {\displaystyle \mathbb {R} ^{3}}         B      {\displaystyle B}         B      {\displaystyle B}         Δ   V   1      ,  Δ   V   2      ,  …  ,  Δ   V   n          {\displaystyle \Delta V_{1},\Delta V_{2},\ldots ,\Delta V_{n}}         k      {\displaystyle k}     任意     (   x   k      ,   y   k      ,   z   k      )      {\displaystyle (x_{k},y_{k},z_{k})}         f      {\displaystyle f}         R      {\displaystyle R}     可积      lim   Δ   V   k      →  0       ∑   k  =  1     n      f  (   x   k      ,   y   k      ,   z   k      )  Δ   V   k          {\displaystyle \lim _{\Delta V_{k}\to 0}\sum _{k=1}^{n}f(x_{k},y_{k},z_{k})\Delta V_{k}}          ∭   B      f  d  V      {\displaystyle \iiint _{B}f\,dV}         V      {\displaystyle V}     三重积分     B      {\displaystyle B}         f      {\displaystyle f}     
 
定理。     f  (  x  ,  y  ,  z  )      {\displaystyle f(x,y,z)}         D      {\displaystyle D}     
(i) if     D  =  {  (  x  ,  y  ,  z  )  :   a   1      ≤  x  ≤   b   1      ,   g   1      (  x  )  ≤  y  ≤   h   1      (  x  )  ,   φ   1      (  x  ,  y  )  ≤  z  ≤   ψ   1      (  x  ,  y  )  }      {\displaystyle D=\{(x,y,z):a_{1}\leq x\leq b_{1},g_{1}(x)\leq y\leq h_{1}(x),\varphi _{1}(x,y)\leq z\leq \psi _{1}(x,y)\}}          ∭   D      f  d  V  =   ∫    a   1          b   1           ∫    g   1      (  x  )      h   1      (  x  )       ∫    φ   1      (  x  ,  y  )      ψ   1      (  x  ,  y  )      f  d  z  d  y  d  x      {\displaystyle \iiint _{D}fdV=\int _{a_{1}}^{b_{1}}\int _{g_{1}(x)}^{h_{1}(x)}\int _{\varphi _{1}(x,y)}^{\psi _{1}(x,y)}f\,dz\,dy\,dx}         D  =  {  (  x  ,  y  ,  z  )  :   a   2      ≤  x  ≤   b   2      ,   g   2      (  x  )  ≤  z  ≤   h   2      (  x  )  ,   φ   2      (  x  ,  z  )  ≤  y  ≤   ψ   2      (  x  ,  z  )  }      {\displaystyle D=\{(x,y,z):a_{2}\leq x\leq b_{2},g_{2}(x)\leq z\leq h_{2}(x),\varphi _{2}(x,z)\leq y\leq \psi _{2}(x,z)\}}          ∭   D      f  d  V  =   ∫    a   2          b   2           ∫    g   2      (  x  )      h   2      (  x  )       ∫    φ   2      (  x  ,  z  )      ψ   2      (  x  ,  z  )      f  d  y  d  z  d  x      {\displaystyle \iiint _{D}fdV=\int _{a_{2}}^{b_{2}}\int _{g_{2}(x)}^{h_{2}(x)}\int _{\varphi _{2}(x,z)}^{\psi _{2}(x,z)}f\,dy\,dz\,dx}         D  =  {  (  x  ,  y  ,  z  )  :   a   3      ≤  y  ≤   b   3      ,   g   3      (  y  )  ≤  x  ≤   h   3      (  y  )  ,   φ   3      (  x  ,  y  )  ≤  z  ≤   ψ   3      (  x  ,  y  )  }      {\displaystyle D=\{(x,y,z):a_{3}\leq y\leq b_{3},g_{3}(y)\leq x\leq h_{3}(y),\varphi _{3}(x,y)\leq z\leq \psi _{3}(x,y)\}}          ∭   D      f  d  V  =   ∫    a   3          b   3           ∫    g   3      (  y  )      h   3      (  y  )       ∫    φ   3      (  x  ,  y  )      ψ   3      (  x  ,  y  )      f  d  z  d  x  d  y      {\displaystyle \iiint _{D}fdV=\int _{a_{3}}^{b_{3}}\int _{g_{3}(y)}^{h_{3}(y)}\int _{\varphi _{3}(x,y)}^{\psi _{3}(x,y)}f\,dz\,dx\,dy}         D  =  {  (  x  ,  y  ,  z  )  :   a   4      ≤  y  ≤   b   4      ,   g   4      (  y  )  ≤  z  ≤   h   4      (  y  )  ,   φ   4      (  y  ,  z  )  ≤  x  ≤   ψ   4      (  y  ,  z  )  }      {\displaystyle D=\{(x,y,z):a_{4}\leq y\leq b_{4},g_{4}(y)\leq z\leq h_{4}(y),\varphi _{4}(y,z)\leq x\leq \psi _{4}(y,z)\}}          ∭   D      f  d  V  =   ∫    a   4          b   4           ∫    g   4      (  y  )      h   4      (  y  )       ∫    φ   4      (  y  ,  z  )      ψ   4      (  y  ,  z  )      f  d  x  d  z  d  y      {\displaystyle \iiint _{D}fdV=\int _{a_{4}}^{b_{4}}\int _{g_{4}(y)}^{h_{4}(y)}\int _{\varphi _{4}(y,z)}^{\psi _{4}(y,z)}f\,dx\,dz\,dy}         D  =  {  (  x  ,  y  ,  z  )  :   a   5      ≤  z  ≤   b   5      ,   g   5      (  z  )  ≤  y  ≤   h   5      (  z  )  ,   φ   5      (  y  ,  z  )  ≤  x  ≤   ψ   5      (  y  ,  z  )  }      {\displaystyle D=\{(x,y,z):a_{5}\leq z\leq b_{5},g_{5}(z)\leq y\leq h_{5}(z),\varphi _{5}(y,z)\leq x\leq \psi _{5}(y,z)\}}          ∭   D      f  d  V  =   ∫    a   5          b   5           ∫    g   5      (  z  )      h   5      (  z  )       ∫    φ   5      (  y  ,  z  )      ψ   5      (  y  ,  z  )      f  d  x  d  y  d  z      {\displaystyle \iiint _{D}fdV=\int _{a_{5}}^{b_{5}}\int _{g_{5}(z)}^{h_{5}(z)}\int _{\varphi _{5}(y,z)}^{\psi _{5}(y,z)}f\,dx\,dy\,dz}         D  =  {  (  x  ,  y  ,  z  )  :   a   6      ≤  z  ≤   b   6      ,   g   6      (  z  )  ≤  x  ≤   h   6      (  z  )  ,   φ   6      (  x  ,  z  )  ≤  y  ≤   ψ   6      (  x  ,  z  )  }      {\displaystyle D=\{(x,y,z):a_{6}\leq z\leq b_{6},g_{6}(z)\leq x\leq h_{6}(z),\varphi _{6}(x,z)\leq y\leq \psi _{6}(x,z)\}}          ∭   D      f  d  V  =   ∫    a   6          b   6           ∫    g   6      (  z  )      h   6      (  z  )       ∫    φ   6      (  x  ,  z  )      ψ   6      (  x  ,  z  )      f  d  y  d  x  d  z      {\displaystyle \iiint _{D}fdV=\int _{a_{6}}^{b_{6}}\int _{g_{6}(z)}^{h_{6}(z)}\int _{\varphi _{6}(x,z)}^{\psi _{6}(x,z)}f\,dy\,dx\,dz}         3  !  =  6      {\displaystyle 3!=6}     
 
命题。     f  (  x  ,  y  ,  z  )      {\displaystyle f(x,y,z)}           R     3          {\displaystyle \mathbb {R} ^{3}}         B      {\displaystyle B}     可积     (  x  ,  y  ,  z  )  ∈  B      {\displaystyle (x,y,z)\in B}         f  (  x  ,  y  ,  z  )  ≥  0      {\displaystyle f(x,y,z)\geq 0}         f      {\displaystyle f}         B      {\displaystyle B}     四维体积      ∭   B      f  d  V  .      {\displaystyle \iiint _{B}fdV.}     
 
证明。 
(i) 给定     D      {\displaystyle D}          x   2      +   y   2      +   z   2      ≤   r   2      ,  x  ≥  0  ,  y  ≥  0      {\displaystyle x^{2}+y^{2}+z^{2}\leq r^{2},x\geq 0,y\geq 0}         z  ≥  0      {\displaystyle z\geq 0}     
     x   2      ≤   x   2      +   y   2      +   z   2      ≤   r   2        and     x  ≥  0  ⟹  0  ≤  x  ≤  r      {\displaystyle x^{2}\leq x^{2}+y^{2}+z^{2}\leq r^{2}{\text{ and }}x\geq 0\implies 0\leq x\leq r}     给定一个固定的     x      {\displaystyle x}         y      {\displaystyle y}         g  (  x  )  ≤  y  ≤  h  (  x  )      {\displaystyle g(x)\leq y\leq h(x)}      步骤:      y   2      ≤   y   2      +      z   2      ⏟       ≥  0          ≤   r   2      −   x   2        ⏟        by      x   2      +   y   2      +   z   2      ≤   r   2            and     y  ≥  0  ⟹  0  ≤  y  ≤     r   2      −   x   2              {\displaystyle y^{2}\leq y^{2}+\underbrace {z^{2}} _{\geq 0}\underbrace {\leq r^{2}-x^{2}} _{{\text{by }}x^{2}+y^{2}+z^{2}\leq r^{2}}{\text{ and }}y\geq 0\implies 0\leq y\leq {\sqrt {r^{2}-x^{2}}}}      给定固定的     x      {\displaystyle x}         y      {\displaystyle y}         x      {\displaystyle x}         0  ≤  x  ≤  r      {\displaystyle 0\leq x\leq r}         y      {\displaystyle y}         x      {\displaystyle x}         z      {\displaystyle z}         φ  (  x  ,  y  )  ≤  z  ≤  ψ  (  x  ,  y  )      {\displaystyle \varphi (x,y)\leq z\leq \psi (x,y)}      步骤:     x   2          ≤   r   2      −   y   2      −   z   2        ⏟        by      x   2      +   y   2      +   z   2      ≤   r   2            and     z  ≥  0  ⟹  0  ≤  z  ≤     r   2      −   y   2      −   z   2              {\displaystyle x^{2}\underbrace {\leq r^{2}-y^{2}-z^{2}} _{{\text{by }}x^{2}+y^{2}+z^{2}\leq r^{2}}{\text{ and }}z\geq 0\implies 0\leq z\leq {\sqrt {r^{2}-y^{2}-z^{2}}}}      Therefore, by generalized Fubini's theorem (triple integrals version)  (i) and proposition about volume given by triple integration , the desired volume is          ∭   D      1  d  V     =   ∫   0     r       ∫   0       r   2      −   z   2             ∫   0       r   2      −   y   2      −   z   2            1  d  x  d  y  d  z        =   ∫   0     r       ∫   0       r   2      −   z   2             (     r   2      −   y   2      −   z   2          )    d  y  d  z        =   ∫   0     r       ∫   0     π   /    2       (    (       r   2      −   z   2      −   (    r   2      −   z   2        )     sin   2        θ    ⏟         (   r   2      −   z   2      )  (  1  −   sin   2        θ  )      =    (   r   2      −   z   2      )       |    cos    θ   |        )     (     r   2      −   z   2          )    cos    θ    )    d  θ  d  z   let     y  =     r   2      −   z   2          sin    θ  ⟹  d  y  =   (     r   2      −   z   2          )    cos    θ  d  θ    and     θ  =  arcsin     (    y    r   2      −   z   2            )    (   by restricting the domain of sine function to     −    π  2      ≤  θ  ≤    π  2      )        =   ∫   0     r        (     r   2      −   z   2          )     2       ∫   0     π   /    2      (  cos    θ  )  (  cos    θ  )  d  θ  d  z   |    cos    θ   |    =  cos    θ    because     cos    θ  ≥  0    when        −  π    2      ≤  θ  ≤    π  2            =   ∫   0     r       (    r   2      −   z   2        )     ∫   0     π   /    2         1  +  cos    (  2  θ  )    2      d  θ  d  z   by double angle formula          =    1  2       ∫   0     r       (    r   2      −   z   2        )     (     π  2      +    1  2      ⋅      sin    π    ⏟       0        )    d  z        =    π  4        [    r   2      z  −     z   3      3        ]     0     r            =    π  4       (    r   3      −     r   3      3        )          =    π  4      ⋅    2  3      ⋅   r   3            =    1  6      π   r   3                  {\displaystyle {\begin{aligned}\iiint _{D}1dV&=\int _{0}^{r}\int _{0}^{\sqrt {r^{2}-z^{2}}}\int _{0}^{\sqrt {r^{2}-y^{2}-z^{2}}}1\,dx\,dy\,dz\\&=\int _{0}^{r}\int _{0}^{\sqrt {r^{2}-z^{2}}}\left({\sqrt {r^{2}-y^{2}-z^{2}}}\right)\,dy\,dz\\&=\int _{0}^{r}\int _{0}^{\pi /2}\left(\left(\underbrace {\sqrt {r^{2}-z^{2}-\left(r^{2}-z^{2}\right)\sin ^{2}\theta }} _{{\sqrt {(r^{2}-z^{2})(1-\sin ^{2}\theta )}}={\sqrt {(r^{2}-z^{2})}}|\cos \theta |}\right)\left({\sqrt {r^{2}-z^{2}}}\right)\cos \theta \right)\,d\theta \,dz\qquad {\text{let }}y={\sqrt {r^{2}-z^{2}}}\sin \theta \implies dy=\left({\sqrt {r^{2}-z^{2}}}\right)\cos \theta \,d\theta {\text{ and }}\theta =\arcsin \left({\frac {y}{\sqrt {r^{2}-z^{2}}}}\right)({\text{by restricting the domain of sine function to }}-{\frac {\pi }{2}}\leq \theta \leq {\frac {\pi }{2}})\\&=\int _{0}^{r}\left({\sqrt {r^{2}-z^{2}}}\right)^{2}\int _{0}^{\pi /2}(\cos \theta )(\cos \theta )\,d\theta \,dz\qquad |\cos \theta |=\cos \theta {\text{ because }}\cos \theta \geq 0{\text{ when }}{\frac {-\pi }{2}}\leq \theta \leq {\frac {\pi }{2}}\\&=\int _{0}^{r}\left(r^{2}-z^{2}\right)\int _{0}^{\pi /2}{\frac {1+\cos(2\theta )}{2}}\,d\theta \,dz\qquad {\text{by double angle formula}}\\&={\frac {1}{2}}\int _{0}^{r}\left(r^{2}-z^{2}\right)\left({\frac {\pi }{2}}+{\frac {1}{2}}\cdot \underbrace {\sin \pi } _{0}\right)\,dz\\&={\frac {\pi }{4}}\left[r^{2}z-{\frac {z^{3}}{3}}\right]_{0}^{r}\\&={\frac {\pi }{4}}\left(r^{3}-{\frac {r^{3}}{3}}\right)\\&={\frac {\pi }{4}}\cdot {\frac {2}{3}}\cdot r^{3}\\&={\frac {1}{6}}\pi r^{3}\end{aligned}}}     
(ii) 由于有八个八分圆(在      R     3          {\displaystyle \mathbb {R} ^{3}}         D      {\displaystyle D}         8   (     1  6      π   r   3        )    =    4  3      π   r   3      .      {\displaystyle 8\left({\frac {1}{6}}\pi r^{3}\right)={\frac {4}{3}}\pi r^{3}.}         ◻      {\displaystyle \Box }     备注:     r      {\displaystyle r}     球体 (由球面包围的立体图形)。