分形/复平面迭代/p misiurewicz
如何使用 Devaney 算法计算主Misiurewicz 点[1]的外部角唤醒 p/q?
- 唤醒(或肢体或灌木)的主 Misiurewicz 点[2]
- 灌木的主节点[3]
- 中心=灌木的中心部分(Pastor 符号),辐条连接的点
- 直接连接到 p/q 球茎的 q 个辐条的连接点(Devaney 符号)[4]
- “M p/q 中第一个支配 α-Misiurewicz 点,即具有最低前周期的点”[5]
- 象眼位于主心形的内部角 1/4 上(Curtis McMullen)
p/q 唤醒的主 misiurewicz 点是
- 它有 q 个臂(辐条,分支),按顺时针方向编号,从 0 到 q-1
- 它是 q 个外部角的着陆点
- 临界点在复二次映射下具有前周期 q 和周期 p = 1,对于
着陆在 的 q 条射线的外部角
- 在 二进制展开式中,前周期部分和周期部分的长度为 q
- 角度在倍增映射下的周期和前周期为 q
重要区别
- Romero-Pastor 符号使用 q/p 而不是 p/q
- 前周期:通常使用临界值 的前周期,而不是临界点 的前周期。这样做的好处是临界值的角在倍增下具有与该点相同的前周期,并且在参数平面上会找到相同的角
如何使用 移位映射?
如果字符串 s 的长度为 q,则
注意
算法基于 RL Devaney 和 M Moreno-Rocha 在 2000 年 4 月 11 日发表的论文“Mandelbrot 集中天线的几何学”中的定理 5.3[6]
中心(见 Claude 的《书籍》第 3.9 节)或辐条的外部角[7]
球茎(= 双曲分量)有两个外部角着陆在其根点(键)上
这样
这些角具有
- 重复的二进制展开式,用圆括号或上划线表示
- 重复(周期性)部分的长度为
这些角度的其他名称是尾流角。
其中心点(主 Misiurewicz 点) 的外角按升序排列
其中
- s 是一个由 q 个二进制数字组成的有限字符串 = s 包含 q 个二进制数字 = length(s)= q
- 是 移位映射
- 分数具有 Farey 父分数 a/b 和 r/s
- b 是较低 Farey 父分数的分母
实现
// https://gitlab.com/adammajewski/wake_gmp
printf("p/q = %d/%d\tb=%d\n\n", p, q, b); // input
printf("(s-)\n"); // first wake ray
printf("s-(s+)\n"); // first Misiurewicz ray
for (j = 1; j< q-1; j++){ // there are q rays ( from 0 to q-1) but only (q-2) has to be computed
n = (j*b) % q;
if (j< q-p)
{printf("s-(d^%d(s+))\n", n);}
else printf("s+(d^%d(s+))\n", n);
}
printf("s+(s-)\n"); // last Misiurewicz ray
printf("(s+)\n"); // last wake ray
输入和输出
[edit | edit source]- 输入:尾流的 2 个外角
- 输出: 主 Misiurewicz 点(中心点)的外角
步骤
[edit | edit source]- 输入 =
- 检查输入
- p 和 q 都是
- 整数
- > 0
- 真分数:p < q
- 不可约分数 = 最简分数(不可约分数(或最简分数或约简分数)是指分子和分母是整数,并且除了 1 之外没有其他公因数的分数。当分子和分母的最大公因数(GCD)为 1 时,分数为最简分数。)
- p 和 q 都是
- 如果输入正确,则有 个角需要计算
- 检查输入
- 计算尾流的 2 个角: 和
- 计算前 2 个 q 角: 和
- 计算最后 个角
- 计算 的 Farey 父分数
- 计算
- (待办)
-- Haskell code by Claude Heiland-Allen
-- http://mathr.co.uk/blog/
-- http://math.bu.edu/people/bob/papers/monica.pdf
-- Geometry of the Antennas in the Mandelbrot Set
-- by R L Devaney and M Moreno-Rocha, April 11, 2000
-- computa a list of external angles from internal angle
hub :: InternalAngle -> [ExternalAngle]
hub pq =
-- List comprehension
[ (sm, shift k sp) | k <- [0, b .. (q - p - 1) * b] ] ++
[ (sp, shift k sp) | k <- [(q - p) * b, (q - p + 1) * b .. (q - 1) * b] ]
where
p = numerator pq
q = denominator pq
-- compute tuple of wake angles = bulb,
-- sm=s- < sp=s+
(([], sm), ([], sp)) = bulb pq -- preperiod is 0 so empty list : pre = []
(ab, cd) = parents pq -- Farey parents
b = denominator ab
shift k = genericTake q . genericDrop k . cycle -- shift map
wake angles of the wake angle of principal Misiurewicz point angles that land on z=0 on the dynamical plane period(c) c --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- k/r = 1/2 wake 1 ; 2/3 Mis 5/12 zcr 5 ; 17/24 period_landing = 1 c -0.2281554936539618 ; 1.115142508039937 k/r = 1/3 wake 1 ; 2/7 Mis 9/56 zcr 9 ; 65/112 period_landing = 1 c -0.1010963638456222 ; 0.9562865108091415 k/r = 1/4 wake 1 ; 2/15 Mis 17/240 zcr 17 ; 257/480 period_landing = 1 c -0.01718797733835019 ; 1.037652343793215 k/r = 1/5 wake 1 ; 2/31 Mis 33/992 zcr 33 ; 1025/1984 period_landing = 1 c -0.01660571692147523 ; 1.006001828834065 k/r = 1/6 wake 1 ; 2/63 Mis 65/4032 zcr 65 ; 4097/8064 period_landing = 1 c 0.002241106093233115 ; 1.006987004324957 k/r = 1/7 wake 1 ; 2/127 Mis 129/16256 zcr 129 ; 16385/32512 period_landing = 1 c -0.001369133815686842 ; 1.002755660363466 k/r = 1/8 wake 1 ; 2/255 Mis 257/65280 zcr 257 ; 65537/130560 period_landing = 1 c 0.001159450074256577 ; 1.000609019839529 k/r = 1/9 wake 1 ; 2/511 Mis 513/261632 zcr 513 ; 262145/523264 period_landing = 1 c 0.0001701882004481036 ; 1.000517331884371 k/r = 1/10 wake 1 ; 2/1023 Mis 1025/1047552 zcr 1025 ; 1048577/2095104 period_landing = 1 c 0.0002217350415235168 ; 0.9999309294242422 k/r = 1/11 wake 1 ; 2/2047 Mis 2049/4192256 zcr 2049 ; 4194305/8384512 period_landing = 1 c 8.600871635354104e-05 ; 1.000043520609493 k/r = 1/12 wake 1 ; 2/4095 Mis 4097/16773120 zcr 4097 ; 16777217 /33546240 period_landing = 1 c 1.907198794976112e-05 ; 0.9999636227152136 k/r = 1/13 wake 1 ; 2/8191 Mis 8193/67100672 zcr 8193 ; 67108865 /134201344 period_landing = 1 c 1.619607246569189e-05 ; 0.9999946863543573 k/r = 1/14 wake 1 ; 2/16383 Mis 16385/268419072 zcr 16385 ; 268435457 /536838144 period_landing = 1 c -2.164159763572468e-06 ; 0.9999930692712914 k/r = 1/15 wake 1 ; 2/32767 Mis 32769/1073709056 zcr 32769 ; 1073741825 /2147418112 period_landing = 1 c 1.36020585022823e-06 ; 0.9999973111035358 k/r = 1/16 wake 1 ; 2/65535 Mis 65537/4294901760 zcr 65537 ; 4294967297 /8589803520 period_landing = 1 c -1.136844998313359e-06 ; 0.9999994042152635 k/r = 1/17 wake 1 ; 2/131071 Mis 131073/17179738112 zcr 131073 ; 17179869185 /34359476224 period_landing = 1 c -1.660928890362016e-07 ; 0.9999994938657326 k/r = 1/18 wake 1 ; 2/262143 Mis 262145/68719214592 zcr 262145 ; 68719476737 /137438429184 period_landing = 1 c -2.165774171377629e-07 ; 1.000000067631949 k/r = 1/19 wake 1 ; 2/524287 Mis 524289/274877382656 zcr 524289 ; 274877906945 /549754765312 period_landing = 1 c -8.402826966472988e-08 ; 0.9999999574950604 k/r = 1/20 wake 1 ; 2/1048575 Mis 1048577/1099510579200 zcr 1048577 ; 1099511627777 /2199021158400 period_landing = 1 c -1.861820421561348e-08 ; 1.000000035526125 k/r = 1/21 wake 1 ; 2/2097151 Mis 2097153/4398044413952 zcr 2097153 ; 4398046511105 /8796088827904 period_landing = 1 c -1.581664298449309e-08 ; 1.000000005190412 k/r = 1/22 wake 1 ; 2/4194303 Mis 4194305/17592181850112 zcr 4194305 ; 17592186044417 /35184363700224 period_landing = 1 c 2.11348855536603e-09 ; 1.000000006768042 k/r = 1/23 wake 1 ; 2/8388607 Mis 8388609/70368735789056 zcr 8388609 ; 70368744177665 /140737471578112 period_landing = 1 c -1.32827905765734e-09 ; 1.000000002625882 k/r = 1/24 wake 1 ; 2/16777215 Mis 16777217/281474959933440 zcr 16777217 ; 281474976710657 /562949919866880 period_landing = 1 c 1.110191297822782e-09 ; 1.000000000581819 k/r = 1/25 wake 1 ; 2/33554431 Mis 33554433/1125899873288192 zcr 33554433 ; 1125899906842625 /2251799746576384 period_landing = 1 c 1.62200284270896e-10 ; 1.00000000049427 k/r = 1/26 wake 1 ; 2/67108863 Mis 67108865/4503599560261632 zcr 67108865 ; 4503599627370497 /9007199120523264 period_landing = 1 c 2.115013311798569e-10 ; 0.9999999999339535 k/r = 1/27 wake 1 ; 2/134217727 Mis 134217729/18014398375264256 zcr 134217729 ; 18014398509481985 /36028796750528512 period_landing = 1 c 8.205882795347896e-11 ; 1.000000000041509 k/r = 1/28 wake 1 ; 2/268435455 Mis 268435457/72057593769492480 zcr 268435457 ; 72057594037927937 /144115187538984960 period_landing = 1 c 1.818186256603596e-11 ; 0.9999999999653065 k/r = 1/29 wake 1 ; 2/536870911 Mis 536870913/288230375614840832 zcr 536870913 ; 288230376151711745 /576460751229681664 period_landing = 1 c 1.544590637441404e-11 ; 0.9999999999949313 k/r = 1/30 wake 1 ; 2/1073741823 Mis 1073741825/1152921503533105152 zcr 1073741825 ; 1152921504606846977 /2305843007066210304 period_landing = 1 c -2.063955458366402e-12 ; 0.9999999999933906 k/r = 1/31 wake 1 ; 2/2147483647 Mis 2147483649/4611686016279904256 zcr 2147483649 ; 4611686018427387905 /9223372032559808512 period_landing = 1 c 1.29718610843552e-12 ; 0.9999999999974356 k/r = 1/32 wake 1 ; 2/4294967295 Mis 4294967297/18446744069414584320 zcr 4294967297 ; 1 /18446744065119617024 period_landing = 1 c -1.084197223871117e-12 ; 0.9999999999994318 k/r = 1/33 wake 1 ; 2/8589934591 pow error
以下列出了 4 个角度 (q+2),按升序排列
- 2 条射线落在根点 (s+ 和 s-) 上
- q=2 条射线落在 Misiurewicz 点上
1/2 的 Farey 父项分别是 0/1 和 1/1
0/1 < 1/2 < 1/1 0.0000000000000000 < 0.5000000000000000 < 1.0000000000000000
较小父项的分母
The angle 5/12 or 01p10 has preperiod = 2 and period = 2. The corresponding parameter ray is landing at a Misiurewicz point of preperiod 2 and period dividing 2.
与以下进行比较
- 是 Myrberg-Feigenbaum 点 c = −1.401155,外部角度为 (0.412454... , 0,58755...)
瓣 ( = 周期 3 双曲分量) 有两条外部角度落在其根点 (键) 上
这样
主要 Misiurewicz 点 是 wake 的一个着陆点,它对应着 个外部角度。它表示为
其中
- 第一个数字表示预周期
- 第二个数字表示周期
其中两个可以很容易地从角度计算出尾迹
这样
因此问题是只计算 1 条射线。
首先找到 的 Farey 父节点[8]。
这样
取较小父节点的分母
并计算最后一个分数。
首先找到周期部分
- 记住移位映射作用于无限序列
- 从移位映射的结果中只取前 q 个数字
然后最后一个角度是
因此这里有 5 个角度 (q+2) 按升序排列
可以使用 Mandel 检查它
The angle 9/56 or 001p010 has preperiod = 3 and period = 3. The corresponding parameter ray is landing at a Misiurewicz point of preperiod 3 and period dividing 3. Do you want to draw the ray and to shift c to the landing point?
1/4
[edit | edit source]灯泡 ( = 周期 4 双曲分量) 有 2 个外部角落在其根点 (键) 上
尾迹的主要 Misiurewicz 点 是 个外部角的着陆点。
其中两个可以很容易地从角度计算出尾迹
因此问题是只计算 条射线。
首先找到 的 Farey 父节点
取较低父节点的分母
并计算最后一个分数。
首先为 n 找到周期部分
然后 2 个最后一个角度是
因此这里有 个角度按升序排列
2/5
[edit | edit source]灯泡 ( = 周期 5 双曲分量) 有 2 个外部角落在其根点 (键) 上
2/5 的 Farey 父节点是 1/3 和 1/2
1/3 < 2/5 < 1/2 0.333333 < 0.400000 < 0.500000
因此较小父节点的分母为 b = 3。
符号形式的角度
(s-) s-(s+) s-(d^3(s+)) s-(d^1(s+)) s+(d^4(s+)) s+(s-) (s+)
*Main> :main 2 5
bulb:
p01001 = 9 % 31
p01010 = 10 % 31
hub:
01001p01010 = 289 % 992
01001p10010 = 297 % 992
01001p10100 = 299 % 992
01010p00101 = 315 % 992
01010p01001 = 319 % 992
The angle 289/992 or 01001p01010 has preperiod = 5 and period = 5. The corresponding parameter ray is landing at a Misiurewicz point of preperiod 5 and period dividing 5.
1/7
[edit | edit source]主心形 1/7 的尾迹
= principal Misiurewicz
c = 0.367375134418445 +0.147183763188559 i = root of the wake 1/7
c = 0.376008681846768 +0.144749371321633 i = period 7 center
外部射线
- 1/127 = 0.(0000001) = 0.0078740157480315 = 尾迹
- 129 /16256 = 0.0000001(0000010) = 0.00793553149606299 = pM_{7,1}
- 131 /16256 = 0.0000001(0000100) = 0.00805856299212598 = pM
- 135 /16256 = 0.0000001(0001000 = 0.00830462598425197 = pM
- 143 /16256 = 0.0000001(0010000) = 0.00879675196850394 = pM
- 159 /16256 = 0.0000001(0100000) = 0.00978100393700787 = pM
- 191 /16256 = 0.0000001(1000000) = 0.01174950787401575 = pM
- 255 /16256 = 0.0000010(0000001) = 0.0156865157480315 = pM
- 1/64 = 0.000000(1) = 0.015625 = M_{6,1} = 最长尖端
- 2/127 = 0.(0000010) = 0.01574803149606299 = 尾迹
3/7
[edit | edit source]尾迹 3/7 及其主要 Misiurewicz 点 (中心)
*Main> :main 3 7
bulb:
p0101001 = 41 % 127
p0101010 = 42 % 127
hub:
0101001p0101010 = 5249 % 16256
0101001p1001010 = 5281 % 16256
0101001p1010010 = 5289 % 16256
0101001p1010100 = 5291 % 16256
0101010p0010101 = 5355 % 16256
0101010p0100101 = 5371 % 16256
0101010p0101001 = 5375 % 16256
使用 Mandel 检查
The angle 5249/16256 or 0101001p0101010 has preperiod = 7 and period = 7. The corresponding parameter ray is landing at a Misiurewicz point of preperiod 7 and period dividing 7.
5/11
[edit | edit source]ghci
GHCi, version 8.10.7: https://www.haskell.org/ghc/ :? for help
Prelude> :l bh.hs
[1 of 1] Compiling Main ( bh.hs, interpreted )
Ok, one module loaded.
*Main> :main 5 11
internal angle p/q = 5 / 11
internal angle in lowest terms =
5 % 11
rays of the bulb:
(01010101001) = 681 % 2047
(01010101010) = 682 % 2047
rays of the principle hub:
01010101001(01010101010) = 1394689 % 4192256
01010101001(10010101010) = 1395201 % 4192256
01010101001(10100101010) = 1395329 % 4192256
01010101001(10101001010) = 1395361 % 4192256
01010101001(10101010010) = 1395369 % 4192256
01010101001(10101010100) = 1395371 % 4192256
01010101010(00101010101) = 1396395 % 4192256
01010101010(01001010101) = 1396651 % 4192256
01010101010(01010010101) = 1396715 % 4192256
01010101010(01010100101) = 1396731 % 4192256
01010101010(01010101001) = 1396735 % 4192256
使用 Mandel 检查
The 5/11-wake of the main cardioid is bounded by the parameter rays with the angles 681/2047 or p01010101001 and 682/2047 or p01010101010 . Do you want to draw the rays and to shift c to the center of the satellite component?
结果是周期 11 卫星分量的中心 c = -0.697838195122425 +0.279304134101366 i 周期 = 11
The angle 1394689/4192256 or 01010101001p01010101010 has preperiod = 11 and period = 11. The corresponding parameter ray lands at a Misiurewicz point of preperiod 11 and period dividing 11. Do you want to draw the ray and to shift c to the landing point?
结果是 5/11 尾迹的主要 Misiurewicz 点 M_{11,1} = c = -0.724112682973574 +0.286456567676711 i
12/25
[edit | edit source]
*Main> :main 12 25 internal angle p/q = 12 / 25 internal angle in lowest terms = 12 % 25 rays of the bulb: (0101010101010101010101001) = 11184809 % 33554431 (0101010101010101010101010) = 11184810 % 33554431 rays of the principle hub: 0101010101010101010101001(0101010101010101010101010) = 375299913023489 % 1125899873288192 0101010101010101010101001(1001010101010101010101010) = 375299921412097 % 1125899873288192 0101010101010101010101001(1010010101010101010101010) = 375299923509249 % 1125899873288192 0101010101010101010101001(1010100101010101010101010) = 375299924033537 % 1125899873288192 0101010101010101010101001(1010101001010101010101010) = 375299924164609 % 1125899873288192 0101010101010101010101001(1010101010010101010101010) = 375299924197377 % 1125899873288192 0101010101010101010101001(1010101010100101010101010) = 375299924205569 % 1125899873288192 0101010101010101010101001(1010101010101001010101010) = 375299924207617 % 1125899873288192 0101010101010101010101001(1010101010101010010101010) = 375299924208129 % 1125899873288192 0101010101010101010101001(1010101010101010100101010) = 375299924208257 % 1125899873288192 0101010101010101010101001(1010101010101010101001010) = 375299924208289 % 1125899873288192 0101010101010101010101001(1010101010101010101010010) = 375299924208297 % 1125899873288192 0101010101010101010101001(1010101010101010101010100) = 375299924208299 % 1125899873288192 0101010101010101010101010(0010101010101010101010101) = 375299940985515 % 1125899873288192 0101010101010101010101010(0100101010101010101010101) = 375299945179819 % 1125899873288192 0101010101010101010101010(0101001010101010101010101) = 375299946228395 % 1125899873288192 0101010101010101010101010(0101010010101010101010101) = 375299946490539 % 1125899873288192 0101010101010101010101010(0101010100101010101010101) = 375299946556075 % 1125899873288192 0101010101010101010101010(0101010101001010101010101) = 375299946572459 % 1125899873288192 0101010101010101010101010(0101010101010010101010101) = 375299946576555 % 1125899873288192 0101010101010101010101010(0101010101010100101010101) = 375299946577579 % 1125899873288192 0101010101010101010101010(0101010101010101001010101) = 375299946577835 % 1125899873288192 0101010101010101010101010(0101010101010101010010101) = 375299946577899 % 1125899873288192 0101010101010101010101010(0101010101010101010100101) = 375299946577915 % 1125899873288192 0101010101010101010101010(0101010101010101010101001) = 375299946577919 % 1125899873288192
着陆点 = 主要 Misiurewicz 点
The angle 375299913023489/1125899873288192 or 0101010101010101010101001p0101010101010101010101010 has preperiod = 25 and period = 25. The corresponding parameter ray lands at a Misiurewicz point of preperiod 25 and period dividing 25. Do you want to draw the ray and to shift c to the landing point? c = -0.745846774741742 +0.124374904775875 i
m-describe 112 100 10000 -0.745846774741742 +0.124374904775875 4 the input point was -7.4584677474174200000000000000000001e-01 + 1.2437490477587499999999999999999999e-01 i nearby hyperbolic components to the input point: - a period 1 cardioid with nucleus at 0.00000e+00 + 0.00000e+00 i the component has size 1.00000e+00 and is pointing west the atom domain has size 0.00000e+00 the atom domain coordinates of the input point are -nan + -nan i the atom domain coordinates in polar form are -nan to the east the atom coordinates of the input point are -0.74585 + 0.12437 i the atom coordinates in polar form are 0.75615 to the west the nucleus is 7.56146e-01 to the east of the input point - a period 2 circle with nucleus at -1.00000e+00 + 0.00000e+00 i the component has size 5.00000e-01 and is pointing west the atom domain has size 1.00000e+00 the atom domain coordinates of the input point are 0.25415 + 0.12437 i the atom domain coordinates in polar form are 0.28295 to the east-north-east the atom coordinates of the input point are 0.50831 + 0.24875 i the atom coordinates in polar form are 0.56591 to the east-north-east the nucleus is 2.82954e-01 to the west-south-west of the input point external angles of this component are: .(01) .(10) the point escaped with dwell 4217.96435 nearby Misiurewicz points to the input point: - 26p4 with center at -7.45846774741742277327028259457753e-01 + 1.24374904775875452739596099543026e-01 i the Misiurewicz domain has size 7.57002e-04 the Misiurewicz domain coordinate radius is 7.0135e-13 the center is 5.30927e-16 to the north-north-west of the input point the multiplier has radius 1.030029879100029796e+00 and angle -0.078808321127835692 (in turns)
1/31
[edit | edit source]*Main> :main 1 31
internal angle p/q = 1 / 31
internal angle in lowest terms =
1 % 31
rays of the bulb:
(0000000000000000000000000000001) = 1 % 2147483647
(0000000000000000000000000000010) = 2 % 2147483647
rays of the principle hub:
0000000000000000000000000000001(0000000000000000000000000000010) = 2147483649 % 4611686016279904256
0000000000000000000000000000001(0000000000000000000000000000100) = 2147483651 % 4611686016279904256
0000000000000000000000000000001(0000000000000000000000000001000) = 2147483655 % 4611686016279904256
0000000000000000000000000000001(0000000000000000000000000010000) = 2147483663 % 4611686016279904256
0000000000000000000000000000001(0000000000000000000000000100000) = 2147483679 % 4611686016279904256
0000000000000000000000000000001(0000000000000000000000001000000) = 2147483711 % 4611686016279904256
0000000000000000000000000000001(0000000000000000000000010000000) = 2147483775 % 4611686016279904256
0000000000000000000000000000001(0000000000000000000000100000000) = 2147483903 % 4611686016279904256
0000000000000000000000000000001(0000000000000000000001000000000) = 2147484159 % 4611686016279904256
0000000000000000000000000000001(0000000000000000000010000000000) = 2147484671 % 4611686016279904256
0000000000000000000000000000001(0000000000000000000100000000000) = 2147485695 % 4611686016279904256
0000000000000000000000000000001(0000000000000000001000000000000) = 2147487743 % 4611686016279904256
0000000000000000000000000000001(0000000000000000010000000000000) = 2147491839 % 4611686016279904256
0000000000000000000000000000001(0000000000000000100000000000000) = 2147500031 % 4611686016279904256
0000000000000000000000000000001(0000000000000001000000000000000) = 2147516415 % 4611686016279904256
0000000000000000000000000000001(0000000000000010000000000000000) = 2147549183 % 4611686016279904256
0000000000000000000000000000001(0000000000000100000000000000000) = 2147614719 % 4611686016279904256
0000000000000000000000000000001(0000000000001000000000000000000) = 2147745791 % 4611686016279904256
0000000000000000000000000000001(0000000000010000000000000000000) = 2148007935 % 4611686016279904256
0000000000000000000000000000001(0000000000100000000000000000000) = 2148532223 % 4611686016279904256
0000000000000000000000000000001(0000000001000000000000000000000) = 2149580799 % 4611686016279904256
0000000000000000000000000000001(0000000010000000000000000000000) = 2151677951 % 4611686016279904256
0000000000000000000000000000001(0000000100000000000000000000000) = 2155872255 % 4611686016279904256
0000000000000000000000000000001(0000001000000000000000000000000) = 2164260863 % 4611686016279904256
0000000000000000000000000000001(0000010000000000000000000000000) = 2181038079 % 4611686016279904256
0000000000000000000000000000001(0000100000000000000000000000000) = 2214592511 % 4611686016279904256
0000000000000000000000000000001(0001000000000000000000000000000) = 2281701375 % 4611686016279904256
0000000000000000000000000000001(0010000000000000000000000000000) = 2415919103 % 4611686016279904256
0000000000000000000000000000001(0100000000000000000000000000000) = 2684354559 % 4611686016279904256
0000000000000000000000000000001(1000000000000000000000000000000) = 3221225471 % 4611686016279904256
0000000000000000000000000000010(0000000000000000000000000000001) = 4294967295 % 4611686016279904256
8/47 = 16/94
[edit | edit source]Haskell 输出
*Main> :main 16 94
internal angle p/q = 16 / 94
internal angle in lowest terms =
8 % 47
rays of the bulb:
(00001000001000001000001000001000001000001000001) = 4467856773185 % 140737488355327
(00001000001000001000001000001000001000001000010) = 4467856773186 % 140737488355327
rays of the hub:
00001000001000001000001000001000001000001000001(00001000001000001000001000001000001000001000010)
00001000001000001000001000001000001000001000001(00001000001000001000001000001000001000010000010)
00001000001000001000001000001000001000001000001(00001000001000001000001000001000010000010000010)
00001000001000001000001000001000001000001000001(00001000001000001000001000010000010000010000010)
00001000001000001000001000001000001000001000001(00001000001000001000010000010000010000010000010)
00001000001000001000001000001000001000001000001(00001000001000010000010000010000010000010000010)
00001000001000001000001000001000001000001000001(00001000010000010000010000010000010000010000010)
00001000001000001000001000001000001000001000001(00010000010000010000010000010000010000010000010)
00001000001000001000001000001000001000001000001(00010000010000010000010000010000010000010000100)
00001000001000001000001000001000001000001000001(00010000010000010000010000010000010000100000100)
00001000001000001000001000001000001000001000001(00010000010000010000010000010000100000100000100)
00001000001000001000001000001000001000001000001(00010000010000010000010000100000100000100000100)
00001000001000001000001000001000001000001000001(00010000010000010000100000100000100000100000100)
00001000001000001000001000001000001000001000001(00010000010000100000100000100000100000100000100)
00001000001000001000001000001000001000001000001(00010000100000100000100000100000100000100000100)
00001000001000001000001000001000001000001000001(00100000100000100000100000100000100000100000100)
00001000001000001000001000001000001000001000001(00100000100000100000100000100000100000100001000)
00001000001000001000001000001000001000001000001(00100000100000100000100000100000100001000001000)
00001000001000001000001000001000001000001000001(00100000100000100000100000100001000001000001000)
00001000001000001000001000001000001000001000001(00100000100000100000100001000001000001000001000)
00001000001000001000001000001000001000001000001(00100000100000100001000001000001000001000001000)
00001000001000001000001000001000001000001000001(00100000100001000001000001000001000001000001000)
00001000001000001000001000001000001000001000001(00100001000001000001000001000001000001000001000)
00001000001000001000001000001000001000001000001(01000001000001000001000001000001000001000001000)
00001000001000001000001000001000001000001000001(01000001000001000001000001000001000001000010000)
00001000001000001000001000001000001000001000001(01000001000001000001000001000001000010000010000)
00001000001000001000001000001000001000001000001(01000001000001000001000001000010000010000010000)
00001000001000001000001000001000001000001000001(01000001000001000001000010000010000010000010000)
00001000001000001000001000001000001000001000001(01000001000001000010000010000010000010000010000)
00001000001000001000001000001000001000001000001(01000001000010000010000010000010000010000010000)
00001000001000001000001000001000001000001000001(01000010000010000010000010000010000010000010000)
00001000001000001000001000001000001000001000001(10000010000010000010000010000010000010000010000)
00001000001000001000001000001000001000001000001(10000010000010000010000010000010000010000100000)
00001000001000001000001000001000001000001000001(10000010000010000010000010000010000100000100000)
00001000001000001000001000001000001000001000001(10000010000010000010000010000100000100000100000)
00001000001000001000001000001000001000001000001(10000010000010000010000100000100000100000100000)
00001000001000001000001000001000001000001000001(10000010000010000100000100000100000100000100000)
00001000001000001000001000001000001000001000001(10000010000100000100000100000100000100000100000)
00001000001000001000001000001000001000001000001(10000100000100000100000100000100000100000100000)
00001000001000001000001000001000001000001000010(00000100000100000100000100000100000100000100001)
00001000001000001000001000001000001000001000010(00000100000100000100000100000100000100001000001)
00001000001000001000001000001000001000001000010(00000100000100000100000100000100001000001000001)
00001000001000001000001000001000001000001000010(00000100000100000100000100001000001000001000001)
00001000001000001000001000001000001000001000010(00000100000100000100001000001000001000001000001)
00001000001000001000001000001000001000001000010(00000100000100001000001000001000001000001000001)
00001000001000001000001000001000001000001000010(00000100001000001000001000001000001000001000001)
00001000001000001000001000001000001000001000010(00001000001000001000001000001000001000001000001)
c 输出
~/book/code/bin$ ./mandelbrot_describe_external_angle '.00001000001000001000001000001000001000001000001(00001000001000001000001000001000001000001000010)'
binary: .00001000001000001000001000001000001000001000001(00001000001000001000001000001000001000001000010)
decimal: 628794940589397270782279681/19807040628565943660897632256
preperiod: 47
period: 47
34/89
[edit | edit source]a@zelman:~/haskell/hub$ ghci
GHCi, version 8.0.2: http://www.haskell.org/ghc/ :? for help
Prelude> :l bh.hs
[1 of 1] Compiling Main ( bh.hs, interpreted )
Ok, modules loaded: Main.
*Main> :main 34 89
internal angle p/q = 34 / 89
internal angle in lowest terms =
34 % 89
rays of the bulb:
(01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001) = 179622968672387565806504265 % 618970019642690137449562111
(01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010) = 179622968672387565806504266 % 618970019642690137449562111
rays of the principle hub:
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010) = 111181232447426046807770849175978166730445345710407681 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(01001010010010100101001001010010100100101001001010010100100101001001010010100100101001010) = 111181232447426046807770849175978166766474142729371649 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(01001010010010100101001001010010100100101001001010010100100101001010010010100100101001010) = 111181232447426046807770849175978166766474142731468801 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(01001010010100100101001001010010100100101001001010010100100101001010010010100100101001010) = 111181232447426046807770849176053724630200057054887937 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(01001010010100100101001001010010100100101001010010010100100101001010010010100100101001010) = 111181232447426046807770849176053724630204455101399041 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(01001010010100100101001001010010100100101001010010010100100101001010010010100101001001010) = 111181232447426046807770849176053724630204455101399297 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(01001010010100100101001010010010100100101001010010010100100101001010010010100101001001010) = 111181232447426046807770849176053733853576491956175105 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(01001010010100100101001010010010100100101001010010010100101001001010010010100101001001010) = 111181232447426046807770849176053733853576492493046017 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(01010010010100100101001010010010100100101001010010010100101001001010010010100101001001010) = 111181232447426046807770849195396546967410559288344833 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(01010010010100100101001010010010100101001001010010010100101001001010010010100101001001010) = 111181232447426046807770849195396546968536459195187457 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(01010010010100100101001010010010100101001001010010010100101001001010010100100101001001010) = 111181232447426046807770849195396546968536459195252993 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(01010010010100101001001010010010100101001001010010010100101001001010010100100101001001010) = 111181232447426046807770849195398908151777894017859841 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(01010010010100101001001010010010100101001001010010100100101001001010010100100101001001010) = 111181232447426046807770849195398908151778031456813313 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(01010010010100101001001010010010100101001001010010100100101001001010010100100101001010010) = 111181232447426046807770849195398908151778031456813321 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(01010010010100101001001010010100100101001001010010100100101001001010010100100101001010010) = 111181232447426046807770849195398908440008407608525065 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(01010010010100101001001010010100100101001001010010100100101001010010010100100101001010010) = 111181232447426046807770849195398908440008407625302281 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(01010010100100101001001010010100100101001001010010100100101001010010010100100101001010010) = 111181232447426046807770849196003371349815722212655369 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(01010010100100101001001010010100100101001010010010100100101001010010010100100101001010010) = 111181232447426046807770849196003371349850906584744201 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(01010010100100101001001010010100100101001010010010100100101001010010010100101001001010010) = 111181232447426046807770849196003371349850906584746249 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(01010010100100101001010010010100100101001010010010100100101001010010010100101001001010010) = 111181232447426046807770849196003445136827201422952713 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(01010010100100101001010010010100100101001010010010100101001001010010010100101001001010010) = 111181232447426046807770849196003445136827205717920009 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10010010100100101001010010010100100101001010010010100101001001010010010100101001001010010) = 111181232447426046807770849350745950047499740080310537 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10010010100100101001010010010100101001001010010010100101001001010010010100101001001010010) = 111181232447426046807770849350745950056506939335051529 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10010010100100101001010010010100101001001010010010100101001001010010100100101001001010010) = 111181232447426046807770849350745950056506939335575817 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10010010100101001001010010010100101001001010010010100101001001010010100100101001001010010) = 111181232447426046807770849350764839522438417916430601 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10010010100101001001010010010100101001001010010100100101001001010010100100101001001010010) = 111181232447426046807770849350764839522439517428058377 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10010010100101001001010010010100101001001010010100100101001001010010100100101001010010010) = 111181232447426046807770849350764839522439517428058441 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10010010100101001001010010100100101001001010010100100101001001010010100100101001010010010) = 111181232447426046807770849350764841828282526641752393 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10010010100101001001010010100100101001001010010100100101001010010010100100101001010010010) = 111181232447426046807770849350764841828282526775970121 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10010100100101001001010010100100101001001010010100100101001010010010100100101001010010010) = 111181232447426046807770849355600545106741043474794825 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10010100100101001001010010100100101001010010010100100101001010010010100100101001010010010) = 111181232447426046807770849355600545107022518451505481 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10010100100101001001010010100100101001010010010100100101001010010010100101001001010010010) = 111181232447426046807770849355600545107022518451521865 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10010100100101001010010010100100101001010010010100100101001010010010100101001001010010010) = 111181232447426046807770849355601135402832877157173577 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10010100100101001010010010100100101001010010010100101001001010010010100101001001010010010) = 111181232447426046807770849355601135402832911516911945 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10010100100101001010010010100100101001010010010100101001001010010010100101001001010010100) = 111181232447426046807770849355601135402832911516911947 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10010100100101001010010010100101001001010010010100101001001010010010100101001001010010100) = 111181232447426046807770849355601135474890505554839883 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10010100100101001010010010100101001001010010010100101001001010010100100101001001010010100) = 111181232447426046807770849355601135474890505559034187 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10010100101001001010010010100101001001010010010100101001001010010100100101001001010010100) = 111181232447426046807770849355752251202342334205872459 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10010100101001001010010010100101001001010010100100101001001010010100100101001001010010100) = 111181232447426046807770849355752251202351130298894667 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10010100101001001010010010100101001001010010100100101001001010010100100101001010010010100) = 111181232447426046807770849355752251202351130298895179 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10010100101001001010010100100101001001010010100100101001001010010100100101001010010010100) = 111181232447426046807770849355752269649095204008446795 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10010100101001001010010100100101001001010010100100101001010010010100100101001010010010100) = 111181232447426046807770849355752269649095205082188619 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10100100101001001010010100100101001001010010100100101001010010010100100101001010010010100) = 111181232447426046807770849394437895876763338672786251 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10100100101001001010010100100101001010010010100100101001010010010100100101001010010010100) = 111181232447426046807770849394437895879015138486471499 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10100100101001001010010100100101001010010010100100101001010010010100101001001010010010100) = 111181232447426046807770849394437895879015138486602571 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10100100101001010010010100100101001010010010100100101001010010010100101001001010010010100) = 111181232447426046807770849394442618245498008131816267 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10100100101001010010010100100101001010010010100101001001010010010100101001001010010010100) = 111181232447426046807770849394442618245498283009723211 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10100100101001010010010100100101001010010010100101001001010010010100101001001010010100100) = 111181232447426046807770849394442618245498283009723227 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10100100101001010010010100101001001010010010100101001001010010010100101001001010010100100) = 111181232447426046807770849394442618821959035313146715 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10100100101001010010010100101001001010010010100101001001010010100100101001001010010100100) = 111181232447426046807770849394442618821959035346701147 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10100101001001010010010100101001001010010010100101001001010010100100101001001010010100100) = 111181232447426046807770849395651544641573664521407323 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10100101001001010010010100101001001010010100100101001001010010100100101001001010010100100) = 111181232447426046807770849395651544641644033265584987 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10100101001001010010010100101001001010010100100101001001010010100100101001010010010100100) = 111181232447426046807770849395651544641644033265589083 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10100101001001010010100100101001001010010100100101001001010010100100101001010010010100100) = 111181232447426046807770849395651692215596622942002011 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001(10100101001001010010100100101001001010010100100101001010010010100100101001010010010100100) = 111181232447426046807770849395651692215596631531936603 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(00100101001001010010100100101001001010010100100101001010010010100100101001010010010100101) = 111181232447426046807770849705136702036941700256717659 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(00100101001001010010100100101001010010010100100101001010010010100100101001010010010100101) = 111181232447426046807770849705136702054956098766199643 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(00100101001001010010100100101001010010010100100101001010010010100101001001010010010100101) = 111181232447426046807770849705136702054956098767248219 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(00100101001010010010100100101001010010010100100101001010010010100101001001010010010100101) = 111181232447426046807770849705174480986819055928957787 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(00100101001010010010100100101001010010010100101001001010010010100101001001010010010100101) = 111181232447426046807770849705174480986821254952213339 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(00100101001010010010100100101001010010010100101001001010010010100101001001010010100100101) = 111181232447426046807770849705174480986821254952213467 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(00100101001010010010100101001001010010010100101001001010010010100101001001010010100100101) = 111181232447426046807770849705174485598507273379601371 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(00100101001010010010100101001001010010010100101001001010010100100101001001010010100100101) = 111181232447426046807770849705174485598507273648036827 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(00101001001010010010100101001001010010010100101001001010010100100101001001010010100100101) = 111181232447426046807770849714845892155424307045686235 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(00101001001010010010100101001001010010100100101001001010010100100101001001010010100100101) = 111181232447426046807770849714845892155987256999107547 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(00101001001010010010100101001001010010100100101001001010010100100101001010010010100100101) = 111181232447426046807770849714845892155987256999140315 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(00101001001010010100100101001001010010100100101001001010010100100101001010010010100100101) = 111181232447426046807770849714847072747607974410443739 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(00101001001010010100100101001001010010100100101001010010010100100101001010010010100100101) = 111181232447426046807770849714847072747608043129920475 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(00101001001010010100100101001001010010100100101001010010010100100101001010010010100101001) = 111181232447426046807770849714847072747608043129920479 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(00101001001010010100100101001010010010100100101001010010010100100101001010010010100101001) = 111181232447426046807770849714847072891723231205776351 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(00101001001010010100100101001010010010100100101001010010010100101001001010010010100101001) = 111181232447426046807770849714847072891723231214164959 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(00101001010010010100100101001010010010100100101001010010010100101001001010010010100101001) = 111181232447426046807770849715149304346626888507841503 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(00101001010010010100100101001010010010100101001001010010010100101001001010010010100101001) = 111181232447426046807770849715149304346644480693885919 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(00101001010010010100100101001010010010100101001001010010010100101001001010010100100101001) = 111181232447426046807770849715149304346644480693886943 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(00101001010010010100101001001010010010100101001001010010010100101001001010010100100101001) = 111181232447426046807770849715149341240132628112990175 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(00101001010010010100101001001010010010100101001001010010100100101001001010010100100101001) = 111181232447426046807770849715149341240132630260473823 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(01001001010010010100101001001010010010100101001001010010100100101001001010010100100101001) = 111181232447426046807770849792520593695468897441669087 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(01001001010010010100101001001010010100100101001001010010100100101001001010010100100101001) = 111181232447426046807770849792520593699972497069039583 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(01001001010010010100101001001010010100100101001001010010100100101001010010010100100101001) = 111181232447426046807770849792520593699972497069301727 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(01001001010010100100101001001010010100100101001001010010100100101001010010010100100101001) = 111181232447426046807770849792530038432938236359729119 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(01001001010010100100101001001010010100100101001010010010100100101001010010010100100101001) = 111181232447426046807770849792530038432938786115543007 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(01001001010010100100101001001010010100100101001010010010100100101001010010010100101001001) = 111181232447426046807770849792530038432938786115543039 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(01001001010010100100101001010010010100100101001010010010100100101001010010010100101001001) = 111181232447426046807770849792530039585860290722390015 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(01001001010010100100101001010010010100100101001010010010100101001001010010010100101001001) = 111181232447426046807770849792530039585860290789498879 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(01001010010010100100101001010010010100100101001010010010100101001001010010010100101001001) = 111181232447426046807770849794947891225089549138911231 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(01001010010010100100101001010010010100101001001010010010100101001001010010010100101001001) = 111181232447426046807770849794947891225230286627266559 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(01001010010010100100101001010010010100101001001010010010100101001001010010100100101001001) = 111181232447426046807770849794947891225230286627274751 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(01001010010010100101001001010010010100101001001010010010100101001001010010100100101001001) = 111181232447426046807770849794948186373135465980100607 % 383123885216472214589586756168607276261994643096338432
01001010010010100101001001010010010100101001001010010100100101001001010010100100101001010(01001010010010100101001001010010010100101001001010010100100101001001010010100100101001001) = 111181232447426046807770849794948186373135483159969791 % 383123885216472214589586756168607276261994643096338432
*Main>
*Main> :main 15 94
internal angle p/q = 15 / 94
internal angle in lowest terms =
15 % 94
rays of the bulb:
(0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001) = 314396870629096754623553665 % 19807040628566084398385987583
(0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000010) = 314396870629096754623553666 % 19807040628566084398385987583
rays of the hub:
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000010)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0000010000010000010000010000001000001000001000000100000100000100000100000010000010000010000010)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0000010000010000010000010000001000001000001000001000000100000100000100000010000010000010000010)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0000010000010000010000010000001000001000001000001000000100000100000100000100000010000010000010)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0000100000010000010000010000001000001000001000001000000100000100000100000100000010000010000010)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0000100000010000010000010000010000001000001000001000000100000100000100000100000010000010000010)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0000100000010000010000010000010000001000001000001000001000000100000100000100000010000010000010)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0000100000010000010000010000010000001000001000001000001000000100000100000100000100000010000010)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0000100000100000010000010000010000001000001000001000001000000100000100000100000100000010000010)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0000100000100000010000010000010000010000001000001000001000000100000100000100000100000010000010)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0000100000100000010000010000010000010000001000001000001000001000000100000100000100000010000010)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0000100000100000010000010000010000010000001000001000001000001000000100000100000100000100000010)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0000100000100000100000010000010000010000001000001000001000001000000100000100000100000100000010)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0000100000100000100000010000010000010000010000001000001000001000000100000100000100000100000010)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0000100000100000100000010000010000010000010000001000001000001000001000000100000100000100000010)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0000100000100000100000010000010000010000010000001000001000001000001000000100000100000100000100)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0000100000100000100000100000010000010000010000001000001000001000001000000100000100000100000100)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0000100000100000100000100000010000010000010000010000001000001000001000000100000100000100000100)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0000100000100000100000100000010000010000010000010000001000001000001000001000000100000100000100)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0001000000100000100000100000010000010000010000010000001000001000001000001000000100000100000100)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0001000000100000100000100000100000010000010000010000001000001000001000001000000100000100000100)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0001000000100000100000100000100000010000010000010000010000001000001000001000000100000100000100)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0001000000100000100000100000100000010000010000010000010000001000001000001000001000000100000100)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0001000001000000100000100000100000010000010000010000010000001000001000001000001000000100000100)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0001000001000000100000100000100000100000010000010000010000001000001000001000001000000100000100)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0001000001000000100000100000100000100000010000010000010000010000001000001000001000000100000100)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0001000001000000100000100000100000100000010000010000010000010000001000001000001000001000000100)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0001000001000001000000100000100000100000010000010000010000010000001000001000001000001000000100)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0001000001000001000000100000100000100000100000010000010000010000001000001000001000001000000100)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0001000001000001000000100000100000100000100000010000010000010000010000001000001000001000000100)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0001000001000001000000100000100000100000100000010000010000010000010000001000001000001000001000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0001000001000001000001000000100000100000100000010000010000010000010000001000001000001000001000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0001000001000001000001000000100000100000100000100000010000010000010000001000001000001000001000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0001000001000001000001000000100000100000100000100000010000010000010000010000001000001000001000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0010000001000001000001000000100000100000100000100000010000010000010000010000001000001000001000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0010000001000001000001000001000000100000100000100000010000010000010000010000001000001000001000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0010000001000001000001000001000000100000100000100000100000010000010000010000001000001000001000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0010000001000001000001000001000000100000100000100000100000010000010000010000010000001000001000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0010000010000001000001000001000000100000100000100000100000010000010000010000010000001000001000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0010000010000001000001000001000001000000100000100000100000010000010000010000010000001000001000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0010000010000001000001000001000001000000100000100000100000100000010000010000010000001000001000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0010000010000001000001000001000001000000100000100000100000100000010000010000010000010000001000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0010000010000010000001000001000001000000100000100000100000100000010000010000010000010000001000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0010000010000010000001000001000001000001000000100000100000100000010000010000010000010000001000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0010000010000010000001000001000001000001000000100000100000100000100000010000010000010000010000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0010000010000010000010000001000001000001000000100000100000100000100000010000010000010000010000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0010000010000010000010000001000001000001000001000000100000100000100000010000010000010000010000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0010000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0100000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0100000010000010000010000010000001000001000001000000100000100000100000100000010000010000010000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0100000010000010000010000010000001000001000001000001000000100000100000100000010000010000010000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0100000010000010000010000010000001000001000001000001000000100000100000100000100000010000010000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0100000100000010000010000010000001000001000001000001000000100000100000100000100000010000010000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0100000100000010000010000010000010000001000001000001000000100000100000100000100000010000010000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0100000100000010000010000010000010000001000001000001000001000000100000100000100000010000010000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0100000100000010000010000010000010000001000001000001000001000000100000100000100000100000010000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0100000100000100000010000010000010000001000001000001000001000000100000100000100000100000010000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0100000100000100000010000010000010000010000001000001000001000000100000100000100000100000010000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0100000100000100000010000010000010000010000001000001000001000001000000100000100000100000010000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0100000100000100000010000010000010000010000001000001000001000001000000100000100000100000100000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0100000100000100000100000010000010000010000001000001000001000001000000100000100000100000100000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0100000100000100000100000010000010000010000010000001000001000001000000100000100000100000100000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(0100000100000100000100000010000010000010000010000001000001000001000001000000100000100000100000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(1000000100000100000100000010000010000010000010000001000001000001000001000000100000100000100000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(1000000100000100000100000100000010000010000010000001000001000001000001000000100000100000100000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(1000000100000100000100000100000010000010000010000010000001000001000001000000100000100000100000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(1000000100000100000100000100000010000010000010000010000001000001000001000001000000100000100000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(1000001000000100000100000100000010000010000010000010000001000001000001000001000000100000100000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(1000001000000100000100000100000100000010000010000010000001000001000001000001000000100000100000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(1000001000000100000100000100000100000010000010000010000010000001000001000001000000100000100000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(1000001000000100000100000100000100000010000010000010000010000001000001000001000001000000100000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(1000001000001000000100000100000100000010000010000010000010000001000001000001000001000000100000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(1000001000001000000100000100000100000100000010000010000010000001000001000001000001000000100000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(1000001000001000000100000100000100000100000010000010000010000010000001000001000001000000100000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(1000001000001000000100000100000100000100000010000010000010000010000001000001000001000001000000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(1000001000001000001000000100000100000100000010000010000010000010000001000001000001000001000000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(1000001000001000001000000100000100000100000100000010000010000010000001000001000001000001000000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001(1000001000001000001000000100000100000100000100000010000010000010000010000001000001000001000000)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000010(0000001000001000001000000100000100000100000100000010000010000010000010000001000001000001000001)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000010(0000001000001000001000001000000100000100000100000010000010000010000010000001000001000001000001)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000010(0000001000001000001000001000000100000100000100000100000010000010000010000001000001000001000001)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000010(0000001000001000001000001000000100000100000100000100000010000010000010000010000001000001000001)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000010(0000010000001000001000001000000100000100000100000100000010000010000010000010000001000001000001)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000010(0000010000001000001000001000001000000100000100000100000010000010000010000010000001000001000001)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000010(0000010000001000001000001000001000000100000100000100000100000010000010000010000001000001000001)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000010(0000010000001000001000001000001000000100000100000100000100000010000010000010000010000001000001)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000010(0000010000010000001000001000001000000100000100000100000100000010000010000010000010000001000001)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000010(0000010000010000001000001000001000001000000100000100000100000010000010000010000010000001000001)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000010(0000010000010000001000001000001000001000000100000100000100000100000010000010000010000001000001)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000010(0000010000010000001000001000001000001000000100000100000100000100000010000010000010000010000001)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000010(0000010000010000010000001000001000001000000100000100000100000100000010000010000010000010000001)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000010(0000010000010000010000001000001000001000001000000100000100000100000010000010000010000010000001)
0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000010(0000010000010000010000001000001000001000001000000100000100000100000100000010000010000010000001)
中枢的第一个角度是
6227271590044554501136183694529415329491604978647695361% 392318858461667547739736838930672110377831130880616169472
-- Haskell code by Claude Heiland-Allen
-- http://mathr.co.uk/blog/
-- http://math.bu.edu/people/bob/papers/monica.pdf
-- Geometry of the Antennas in the Mandelbrot Set
-- by R L Devaney and M Moreno-Rocha, April 11, 2000
import Control.Monad (forM_)
import Data.List (genericTake, genericDrop, intercalate)
import Data.Fixed (mod')
import Data.Ratio ((%), numerator, denominator)
import Numeric (readInt)
import System.Environment (getArgs)
type InternalAngle = Rational -- let pq = p % q
type ExternalAngle = ([Bool], [Bool]) -- tuple of lists ([preperiodic], [periodic])
-- convert bool value to char 0 or 1
bit :: Bool -> Char
bit False = '0'
bit True = '1'
-- convert list of bool values to string of bits
bits :: [Bool] -> String
bits = map bit
-- converts tuple of the lists (pre, per) to the string
pretty :: ExternalAngle -> String
pretty (pre, per) = bits pre ++ "(" ++ bits per ++")"
-- converts a list of bits to an Integer, by parsing a String.
binary :: [Bool] -> Integer
binary [] = 0
binary s = case readInt 2 (`elem`"01") (\c -> case c of '0' -> 0 ; '1' -> 1) (bits s) of
[(b, "")] -> b
-- external angle from tuple form to rational number
rational :: ExternalAngle -> Rational
rational (pre, per) = (binary pre % 2^p) + (binary per % (2^p * (2^q - 1)))
where
p = length pre
q = length per
-- compute a tuple of external angles from internal angle
-- rays for such angles land on the root of pq wake = wake angles = bulb
bulb :: InternalAngle -> (ExternalAngle, ExternalAngle)
bulb pq = (([], bs ++ [False, True]), ([], bs ++ [True, False]))
where
q = denominator pq
bs
= genericTake (q - 2)
. map (\x -> 1 - pq < x && x < 1)
. iterate (\x -> (x + pq) `mod'` 1)
$ pq
-- parents in the Farey tree
-- http://mathr.co.uk/blog/2016-10-31_finding_parents_in_the_farey_tree.html
parents :: InternalAngle -> (InternalAngle, InternalAngle)
parents pq = go q 1 0 p 0 1
where
p = numerator pq
q = denominator pq
go r1 s1 t1 r0 s0 t0
| r0 == 0 =
let ab = - s1 % t1
a = numerator ab
b = denominator ab
c = p - a
d = q - b
cd = c % d
in (min ab cd, max ab cd)
| otherwise =
let (o, r) = divMod r1 r0
s = s1 - o * s0
t = t1 - o * t0
in go r0 s0 t0 r s t
-- computa a list of external angles from internal angle
hub :: InternalAngle -> [ExternalAngle]
hub pq =
-- List comprehension
[ (sm, shift k sp) | k <- [0, b .. (q - p - 1) * b] ] ++
[ (sp, shift k sp) | k <- [(q - p) * b, (q - p + 1) * b .. (q - 1) * b] ]
where
p = numerator pq
q = denominator pq
-- compute tuple of wake angles = bulb,
-- sm=s- < sp=s+
(([], sm), ([], sp)) = bulb pq -- preperiod is 0 so empty list : pre = []
(ab, cd) = parents pq -- Farey parents
b = denominator ab
shift k = genericTake q . genericDrop k . cycle -- shift map
main :: IO ()
main = do
-- read the input
[sp, sq] <- getArgs
p <- readIO sp
q <- readIO sq
-- compute
let pq = p % q
(lo, hi) = bulb pq
hs = hub pq
-- output the results
putStrLn $ "internal angle p/q = " ++ sp ++ " / " ++ sq
putStrLn $ "internal angle in lowest terms = "
print pq
putStrLn $ "rays of the bulb:"
putStrLn $ pretty lo ++ " = " ++ show (rational lo)
putStrLn $ pretty hi ++ " = " ++ show (rational hi)
putStrLn $ ""
putStrLn $ "rays of the principle hub:"
forM_ hs $ \h -> putStrLn $ pretty h ++ " = " ++ show (rational h)
将其保存为 bh.hs 并以交互方式从控制台使用它
ghci
GHCi, version 7.10.3: http://www.haskell.org/ghc/ :? for help
Prelude> :l bh.hs
[1 of 1] Compiling Main ( bh.hs, interpreted )
Ok, modules loaded: Main.
*Main> :main 1 2
bulb:
p01 = 1 % 3
p10 = 2 % 3
hub:
01p10 = 5 % 12
10p01 = 7 % 12
*Main> :main 1 3
bulb:
p001 = 1 % 7
p010 = 2 % 7
hub:
001p010 = 9 % 56
001p100 = 11 % 56
010p001 = 15 % 56
*Main> :main 1 4
bulb:
p0001 = 1 % 15
p0010 = 2 % 15
hub:
0001p0010 = 17 % 240
0001p0100 = 19 % 240
0001p1000 = 23 % 240
0010p0001 = 31 % 240
:main 1 5
bulb:
p00001 = 1 % 31
p00010 = 2 % 31
hub:
00001p00010 = 33 % 992
00001p00100 = 35 % 992
00001p01000 = 39 % 992
00001p10000 = 47 % 992
00010p00001 = 63 % 992
*Main> :main 1 6
bulb:
p000001 = 1 % 63
p000010 = 2 % 63
hub:
000001p000010 = 65 % 4032
000001p000100 = 67 % 4032
000001p001000 = 71 % 4032
000001p010000 = 79 % 4032
000001p100000 = 95 % 4032
000010p000001 = 127 % 4032
*Main> :main 1 7
bulb:
p0000001 = 1 % 127
p0000010 = 2 % 127
hub:
0000001p0000010 = 129 % 16256
0000001p0000100 = 131 % 16256
0000001p0001000 = 135 % 16256
0000001p0010000 = 143 % 16256
0000001p0100000 = 159 % 16256
0000001p1000000 = 191 % 16256
0000010p0000001 = 255 % 16256
*Main> :main 1 8
bulb:
p00000001 = 1 % 255
p00000010 = 2 % 255
hub:
00000001p00000010 = 257 % 65280
00000001p00000100 = 259 % 65280
00000001p00001000 = 263 % 65280
00000001p00010000 = 271 % 65280
00000001p00100000 = 287 % 65280
00000001p01000000 = 319 % 65280
00000001p10000000 = 383 % 65280
00000010p00000001 = 511 % 65280
*Main> :main 1 9
bulb:
p000000001 = 1 % 511
p000000010 = 2 % 511
hub:
000000001p000000010 = 513 % 261632
000000001p000000100 = 515 % 261632
000000001p000001000 = 519 % 261632
000000001p000010000 = 527 % 261632
000000001p000100000 = 543 % 261632
000000001p001000000 = 575 % 261632
000000001p010000000 = 639 % 261632
000000001p100000000 = 767 % 261632
000000010p000000001 = 1023 % 261632
*Main> :main 1 10
bulb:
p0000000001 = 1 % 1023
p0000000010 = 2 % 1023
hub:
0000000001p0000000010 = 1025 % 1047552
0000000001p0000000100 = 1027 % 1047552
0000000001p0000001000 = 1031 % 1047552
0000000001p0000010000 = 1039 % 1047552
0000000001p0000100000 = 1055 % 1047552
0000000001p0001000000 = 1087 % 1047552
0000000001p0010000000 = 1151 % 1047552
0000000001p0100000000 = 1279 % 1047552
0000000001p1000000000 = 1535 % 1047552
0000000010p0000000001 = 2047 % 1047552
*Main> :main 1 5
bulb:
p00001 = 1 % 31
p00010 = 2 % 31
hub:
00001p00010 = 33 % 992
00001p00100 = 35 % 992
00001p01000 = 39 % 992
00001p10000 = 47 % 992
00010p00001 = 63 % 992
*Main> :main 3 5
bulb:
p10101 = 21 % 31
p10110 = 22 % 31
hub:
10101p10110 = 673 % 992
10101p11010 = 677 % 992
10110p01011 = 693 % 992
10110p01101 = 695 % 992
10110p10101 = 703 % 992
*Main> :main 4 5
bulb:
p11101 = 29 % 31
p11110 = 30 % 31
hub:
11101p11110 = 929 % 992
11110p01111 = 945 % 992
11110p10111 = 953 % 992
11110p11011 = 957 % 992
11110p11101 = 959 % 992
*Main>
*Main> :main 1 7
bulb:
p0000001 = 1 % 127
p0000010 = 2 % 127
hub:
0000001p0000010 = 129 % 16256
0000001p0000100 = 131 % 16256
0000001p0001000 = 135 % 16256
0000001p0010000 = 143 % 16256
0000001p0100000 = 159 % 16256
0000001p1000000 = 191 % 16256
0000010p0000001 = 255 % 16256
*Main> :main 2 7
bulb:
p0010001 = 17 % 127
p0010010 = 18 % 127
hub:
0010001p0010010 = 2177 % 16256
0010001p0100010 = 2193 % 16256
0010001p0100100 = 2195 % 16256
0010001p1000100 = 2227 % 16256
0010001p1001000 = 2231 % 16256
0010010p0001001 = 2295 % 16256
0010010p0010001 = 2303 % 16256
*Main> :main 4 7
bulb:
p1010101 = 85 % 127
p1010110 = 86 % 127
hub:
1010101p1010110 = 10881 % 16256
1010101p1011010 = 10885 % 16256
1010101p1101010 = 10901 % 16256
1010110p0101011 = 10965 % 16256
1010110p0101101 = 10967 % 16256
1010110p0110101 = 10975 % 16256
1010110p1010101 = 11007 % 16256
*Main> :main 5 7
bulb:
p1101101 = 109 % 127
p1101110 = 110 % 127
hub:
1101101p1101110 = 13953 % 16256
1101101p1110110 = 13961 % 16256
1101110p0110111 = 14025 % 16256
1101110p0111011 = 14029 % 16256
1101110p1011011 = 14061 % 16256
1101110p1011101 = 14063 % 16256
1101110p1101101 = 14079 % 16256
*Main> :main 6 7
bulb:
p1111101 = 125 % 127
p1111110 = 126 % 127
hub:
1111101p1111110 = 16001 % 16256
1111110p0111111 = 16065 % 16256
1111110p1011111 = 16097 % 16256
1111110p1101111 = 16113 % 16256
1111110p1110111 = 16121 % 16256
1111110p1111011 = 16125 % 16256
1111110p1111101 = 16127 % 16256
*Main>
:main 1 65
bulb:
p00000000000000000000000000000000000000000000000000000000000000001 = 1 % 36893488147419103231
p00000000000000000000000000000000000000000000000000000000000000010 = 2 % 36893488147419103231
hub:
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000000000000000000000000010 = 36893488147419103233 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000000000000000000000000100 = 36893488147419103235 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000000000000000000000001000 = 36893488147419103239 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000000000000000000000010000 = 36893488147419103247 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000000000000000000000100000 = 36893488147419103263 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000000000000000000001000000 = 36893488147419103295 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000000000000000000010000000 = 36893488147419103359 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000000000000000000100000000 = 36893488147419103487 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000000000000000001000000000 = 36893488147419103743 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000000000000000010000000000 = 36893488147419104255 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000000000000000100000000000 = 36893488147419105279 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000000000000001000000000000 = 36893488147419107327 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000000000000010000000000000 = 36893488147419111423 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000000000000100000000000000 = 36893488147419119615 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000000000001000000000000000 = 36893488147419135999 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000000000010000000000000000 = 36893488147419168767 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000000000100000000000000000 = 36893488147419234303 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000000001000000000000000000 = 36893488147419365375 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000000010000000000000000000 = 36893488147419627519 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000000100000000000000000000 = 36893488147420151807 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000001000000000000000000000 = 36893488147421200383 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000010000000000000000000000 = 36893488147423297535 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000000100000000000000000000000 = 36893488147427491839 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000001000000000000000000000000 = 36893488147435880447 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000010000000000000000000000000 = 36893488147452657663 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000000100000000000000000000000000 = 36893488147486212095 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000001000000000000000000000000000 = 36893488147553320959 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000010000000000000000000000000000 = 36893488147687538687 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000000100000000000000000000000000000 = 36893488147955974143 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000001000000000000000000000000000000 = 36893488148492845055 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000010000000000000000000000000000000 = 36893488149566586879 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000000100000000000000000000000000000000 = 36893488151714070527 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000001000000000000000000000000000000000 = 36893488156009037823 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000010000000000000000000000000000000000 = 36893488164598972415 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000000100000000000000000000000000000000000 = 36893488181778841599 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000001000000000000000000000000000000000000 = 36893488216138579967 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000010000000000000000000000000000000000000 = 36893488284858056703 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000000100000000000000000000000000000000000000 = 36893488422297010175 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000001000000000000000000000000000000000000000 = 36893488697174917119 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000010000000000000000000000000000000000000000 = 36893489246930731007 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000000100000000000000000000000000000000000000000 = 36893490346442358783 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000001000000000000000000000000000000000000000000 = 36893492545465614335 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000010000000000000000000000000000000000000000000 = 36893496943512125439 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000000100000000000000000000000000000000000000000000 = 36893505739605147647 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000001000000000000000000000000000000000000000000000 = 36893523331791192063 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000010000000000000000000000000000000000000000000000 = 36893558516163280895 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000000100000000000000000000000000000000000000000000000 = 36893628884907458559 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000001000000000000000000000000000000000000000000000000 = 36893769622395813887 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000010000000000000000000000000000000000000000000000000 = 36894051097372524543 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000000100000000000000000000000000000000000000000000000000 = 36894614047325945855 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000001000000000000000000000000000000000000000000000000000 = 36895739947232788479 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000010000000000000000000000000000000000000000000000000000 = 36897991747046473727 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000000100000000000000000000000000000000000000000000000000000 = 36902495346673844223 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000001000000000000000000000000000000000000000000000000000000 = 36911502545928585215 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000010000000000000000000000000000000000000000000000000000000 = 36929516944438067199 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000000100000000000000000000000000000000000000000000000000000000 = 36965545741457031167 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000001000000000000000000000000000000000000000000000000000000000 = 37037603335494959103 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000010000000000000000000000000000000000000000000000000000000000 = 37181718523570814975 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00000100000000000000000000000000000000000000000000000000000000000 = 37469948899722526719 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00001000000000000000000000000000000000000000000000000000000000000 = 38046409652025950207 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00010000000000000000000000000000000000000000000000000000000000000 = 39199331156632797183 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p00100000000000000000000000000000000000000000000000000000000000000 = 41505174165846491135 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p01000000000000000000000000000000000000000000000000000000000000000 = 46116860184273879039 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000001p10000000000000000000000000000000000000000000000000000000000000000 = 55340232221128654847 % 1361129467683753853816604941579653742592
00000000000000000000000000000000000000000000000000000000000000010p00000000000000000000000000000000000000000000000000000000000000001 = 73786976294838206463 % 1361129467683753853816604941579653742592
*Main>
- ↑ 维基百科:Misiurewicz 点
- ↑ 维基百科:Misiurewicz 点
- ↑ G. Pastor、M. Romera、G. Alvarez、J. Nunez、D. Arroyo 和 F. Montoya 使用 Douady 和 Hubbard 的外部参数进行运算
- ↑ RL Devaney 和 M Moreno-Rocha 的 Mandelbrot 集中天线的几何
- ↑ Mandelbrot 集肢体之间同胚的扩展,作者 Bodil Branner 和 Nuria Fagella
- ↑ Mandelbrot 集中天线的几何(2000 年),作者 R. L. Devaney、M. Moreno-rocha
- ↑ 通过 Mandelbrot 集中的辐条进行导航,作者 Claude Heiland-Allen
- ↑ 在 Farey 树中查找父节点,作者 Claude Heiland-Allen