分形/数学/序列
外观
< 分形
n 阶法雷序列是指 0 和 1 之间的完全约简真分数序列,它们在最低项时分母小于或等于 n,并按大小递增排列。
每个法雷序列都以值 0 开始,用分数 0⁄1 表示,并以值 1 结束,用分数 1⁄1 表示(尽管一些作者省略了这些项)。
法雷加法 = 两个分数的中项
项
- 下一项 = 子节点
- 前一项 = 父节点[1]
法雷树 = 法雷序列作为树
排序 |
---|
F1 = {0/1, 1/1} F2 = {0/1, 1/2, 1/1} F3 = {0/1, 1/3, 1/2, 2/3, 1/1} F4 = {0/1, 1/4, 1/3, 1/2, 2/3, 3/4, 1/1} F5 = {0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1} F6 = {0/1, 1/6, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 1/1} F7 = {0/1, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 2/5, 3/7, 1/2, 4/7, 3/5, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 1/1} F8 = {0/1, 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8, 1/1} |
参见
- 角度为 1/(4*2^n) 的外部射线落在第一个分支的尖端上:1/4, 1/8, 1/16, 1/32, 1/64, ...
- 1/(6*2^n) - 落在第二个分支上
- p/q 醒来后的主要米西乌雷维奇点
- primary_separators
-
三次
取 的米西乌雷维奇点并增加 n(由欧文·马雷什提出)
二次(n=2)、三次(n=3)和四次(n=4)多项式的常数(参数 c)为
- (-0.7432918908524301520519705530861564778806 ,0.1312405523087976002753516038253522297699);
- -0.0649150006787816892861875745218343125883 , 0.76821968591243610206311097043854440463 );
- (-0.593611822136354943067129147813253628530 ,0.5405019391915187246754930586066158919613 );
点 c 是米西乌雷维奇点
- 最长分支的尖端(ftip)
- 角度 8388607/25165824 或 01010101010101010101010p01 的前周期 = 23,周期 = 2
- 来自 12/25 的醒来,中心为
- c = -0.739829393511579 +0.125072144080321 i,周期 = 25
- 根点 c = -0.738203140939397 +0.124839088573366 i
m-describe 53 30 500 -0.7432918908524301 0.1312405523087976 4 the input point was -7.4329189085243008e-01 + 1.3124055230879761e-01 i nearby hyperbolic components to the input point: - a period 1 cardioid with nucleus at 0.00000e+00 + 0.00000e+00 i the component has size 1.00000e+00 and is pointing west the atom domain has size 0.00000e+00 the atom domain coordinates of the input point are -nan + -nan i the atom domain coordinates in polar form are -nan to the east the atom coordinates of the input point are -0.74329 + 0.13124 i the atom coordinates in polar form are 0.75479 to the west the nucleus is 7.54789e-01 to the east of the input point - a period 2 circle with nucleus at -1.00000e+00 + 0.00000e+00 i the component has size 5.00000e-01 and is pointing west the atom domain has size 1.00000e+00 the atom domain coordinates of the input point are 0.25671 + 0.13124 i the atom domain coordinates in polar form are 0.28831 to the east-north-east the atom coordinates of the input point are 0.51342 + 0.26248 i the atom coordinates in polar form are 0.57662 to the east-north-east the nucleus is 2.88311e-01 to the west-south-west of the input point external angles of this component are: .(01) .(10) the point escaped with dwell 472.09881 nearby Misiurewicz points to the input point: - 24p4 with center at -7.43291890852430202931624325972515e-01 + 1.31240552308797604770845906581477e-01 i the Misiurewicz domain has size 1.07586e-03 the Misiurewicz domain coordinate radius is 1.1395e-13 the center is 1.21387e-16 to the west of the input point the multiplier has radius 1.329970173958942893e+00 and angle 0.150434052944417735 (in turns)
The angle 8388607/25165824 or 01010101010101010101010p01 has preperiod = 23 and period = 2. The corresponding parameter ray lands at a Misiurewicz point of preperiod 23 and period dividing 2. Do you want to draw the ray and to shift c to the landing point? c = -0.743291890852430 +0.131240552308798 i period = 0
示例
- 周期为 (周期倍增级联)的根点序列,序列的极限点是 米尔伯格-费根鲍姆点
- 周期为 的根点序列,序列的极限点是 Myrberg-Feigenbaum 点
"Sharkovsky 排序
- 以 **递增** 顺序(从左到右 n 递增)从大于等于 3 的奇数开始,
- 然后是这些数字的两倍,
- 然后是它们的四倍,
- 然后是它们的八倍,
- 等等,
- 以 **递减** 顺序结束 2 的幂,以 2^0 = 1 结束。“[3]
它与 Mandelbrot 集实数切片(沿实轴)的结构 相关联
- 混沌区域,它由 混沌带 组成
- MF = Myrberg-Feigenbaum 点
- 周期区域 P,周期倍增级联 = 2^n
-
由指数映射显示的 Mandelbrot 集中的周期倍增级联(1/2 族)
-
逃逸路径 1/2
-
周期倍增
在象谷[4][5](来自参数平面)中,存在一系列周期为 p 的分量:从 1/2 到 1/p
请注意
- 内部射线 0/1 = 1/1
- 内部角 1/p 表示射线从周期为 1 的分量(父周期 = 1)到周期为 p 的分量(子周期 = p)
- 随着子周期的增长,计算变得更加困难
- 指数增长[6] 。可以轻松地创建一个数值,该数值 超出可用存储空间表示的范围(**整数溢出**[7])。例如 对短整型(16 位)和长整型(32 位)而言过大。
Mandelbrot 集主心形周围的旋转数的上主序列[8]
n | 旋转数 = 1/n | 参数 c |
---|---|---|
2 | 1/2 | -0.75 |
3 | 1/3 | 0.64951905283833*i-0.125 |
4 | 1/4 | 0.5*i+0.25 |
5 | 1/5 | 0.32858194507446*i+0.35676274578121 |
6 | 1/6 | 0.21650635094611*i+0.375 |
7 | 1/7 | 0.14718376318856*i+0.36737513441845 |
8 | 1/8 | 0.10355339059327*i+0.35355339059327 |
9 | 1/9 | 0.075191866590218*i+0.33961017714276 |
10 | 1/10 | 0.056128497072448*i+0.32725424859374 |
参见
- 重标肢体收敛到 Lavaurs 象的幻灯片 - 视频,由 Wolf Jung 使用 Mandel 制作
这里
- t = 主心形的内部角(或旋转数)
- q = 临界轨道的臂数(星形)。这意味着必须围绕不动点进行 q 次迭代,才能沿着臂将一个点移向不动点。
- c 是周期为 1(= 主心形)和周期为 q 的双曲分量之间的根点。该点位于内部射线(角为 t)的末端(半径 = 1)
k = log10(q) | (double)t | ||
---|---|---|---|
1 | 3/10 | 0.3 | +0.047745751406263+0.622474571220695 i |
2 | 33/100 | 0.33 | -0.106920138306109 +0.649235321397436 i |
3 | 333/1000 | 0.333 | -0.123186752260805 +0.649516204880454 i |
4 | 3333/10000 | 0.3333 | -0.124818625550005 +0.649519024348384 i |
5 | 33333/100000 | 0.33333 | -0.124981862061192 +0.649519052553419 i |
6 | 333333/1000000 | 0.333333 | -0.124998186201184 +0.649519052835480 i |
7 | 3333333/10000000 | 0.3333333 | -0.124999818620069 +0.649519052838300 i |
8 | 33333333/100000000 | 0.33333333 | -0.124999981862006 +0.649519052838329 i |
9 | 333333333/1000000000 | 0.333333333 | -0.124999998186201 +0.649519052838329 i |
10 | 3333333333/10000000000 | 0.3333333333 | -0.124999999818620 +0.649519052838329 i |
- 普通西格尔圆盘
- 数字化西格尔圆盘[9]
- 虚拟西格尔圆盘
- ? Leau-Fatou 花?
-
对于接近 Mandelbrot 集主心形边界上的内部角 t=1/2 的 c,西格尔圆盘内折
n | t | ||
---|---|---|---|
0 | 0.2763932022500210 | +0.1538380639536641 + 0.5745454151066985 i | |
1 | 0.3231874668087892 | -0.0703924965263780 + 0.6469145331346999 i | |
2 | 0.3322326933513446 | -0.1190170769366243 + 0.6494880316361160 i | |
3 | 0.3332223278292314 | -0.1243960357918422 + 0.6495187369145560 i | |
4 | 0.3333222232791965 | -0.1249395463818515 + 0.6495190496732967 i | |
5 | 0.3333322222327929 | -0.1249939540657307 + 0.6495190528066729 i | |
6 | 0.3333332222223279 | -0.1249993954008480 + 0.6495190528380124 i | |
7 | 0.3333333222222233 | -0.1249999395400276 + 0.6495190528383258 i | |
8 | 0.3333333322222222 | -0.1249999939540022 + 0.6495190528383290 i | |
9 | 0.3333333332222223 | -0.1249999993954002 + 0.6495190528383290 i | |
10 | 0.3333333333222222 | -0.1249999999395400 + 0.6495190528383290 i | |
11 | 0.3333333333322222 | -0.1249999999939540 + 0.6495190528383290 i |
n = 1 ; p_n/q_n = 1.0000000000000000000 = 1 / 1 n = 2 ; p_n/q_n = 0.5000000000000000000 = 1 / 2 n = 3 ; p_n/q_n = 0.6666666666666666667 = 2 / 3 n = 4 ; p_n/q_n = 0.6000000000000000000 = 3 / 5 n = 5 ; p_n/q_n = 0.6250000000000000000 = 5 / 8 n = 6 ; p_n/q_n = 0.6153846153846153846 = 8 / 13 n = 7 ; p_n/q_n = 0.6190476190476190476 = 13 / 21 n = 8 ; p_n/q_n = 0.6176470588235294118 = 21 / 34 n = 9 ; p_n/q_n = 0.6181818181818181818 = 34 / 55 n = 10 ; p_n/q_n = 0.6179775280898876404 = 55 / 89 n = 11 ; p_n/q_n = 0.6180555555555555556 = 89 / 144 n = 12 ; p_n/q_n = 0.6180257510729613734 = 144 / 233 n = 13 ; p_n/q_n = 0.6180371352785145888 = 233 / 377 n = 14 ; p_n/q_n = 0.6180327868852459016 = 377 / 610 n = 15 ; p_n/q_n = 0.6180344478216818642 = 610 / 987 n = 16 ; p_n/q_n = 0.6180338134001252348 = 987 / 1597 n = 17 ; p_n/q_n = 0.6180340557275541796 = 1597 / 2584 n = 18 ; p_n/q_n = 0.6180339631667065295 = 2584 / 4181 n = 19 ; p_n/q_n = 0.6180339985218033999 = 4181 / 6765 n = 20 ; p_n/q_n = 0.6180339850173579390 = 6765 / 10946 n = 21 ; p_n/q_n = 0.6180339901755970865 = 10946 / 17711 n = 22 ; p_n/q_n = 0.6180339882053250515 = 17711 / 28657 n = 23 ; p_n/q_n = 0.6180339889579020014 = 28657 / 46368 n = 24 ; p_n/q_n = 0.6180339886704431856 = 46368 / 75025 n = 25 ; p_n/q_n = 0.6180339887802426829 = 75025 / 121393 n = 26 ; p_n/q_n = 0.6180339887383030068 = 121393 / 196418 n = 27 ; p_n/q_n = 0.6180339887543225376 = 196418 / 317811 n = 28 ; p_n/q_n = 0.6180339887482036214 = 317811 / 514229 n = 29 ; p_n/q_n = 0.6180339887505408394 = 514229 / 832040 n = 30 ; p_n/q_n = 0.6180339887496481015 = 832040 / 1346269 n = 31 ; p_n/q_n = 0.6180339887499890970 = 1346269 / 2178309 n = 32 ; p_n/q_n = 0.6180339887498588484 = 2178309 / 3524578 n = 33 ; p_n/q_n = 0.6180339887499085989 = 3524578 / 5702887 n = 34 ; p_n/q_n = 0.6180339887498895959 = 5702887 / 9227465 n = 35 ; p_n/q_n = 0.6180339887498968544 = 9227465 / 14930352 n = 36 ; p_n/q_n = 0.6180339887498940819 = 14930352 / 24157817 n = 37 ; p_n/q_n = 0.6180339887498951409 = 24157817 / 39088169 n = 38 ; p_n/q_n = 0.6180339887498947364 = 39088169 / 63245986 n = 39 ; p_n/q_n = 0.6180339887498948909 = 63245986 / 102334155 n = 40 ; p_n/q_n = 0.6180339887498948319 = 102334155 / 165580141 n = 41 ; p_n/q_n = 0.6180339887498948544 = 165580141 / 267914296 n = 42 ; p_n/q_n = 0.6180339887498948458 = 267914296 / 433494437 n = 43 ; p_n/q_n = 0.6180339887498948491 = 433494437 / 701408733 n = 44 ; p_n/q_n = 0.6180339887498948479 = 701408733 / 1134903170 n = 45 ; p_n/q_n = 0.6180339887498948483 = 1134903170 / 1836311903
这是一个有理数序列(朱利亚集是抛物线的)。它的极限是一个无理数(朱利亚集有一个西格尔圆盘)。
- 轨道