分形/复平面上的迭代/西格尔
The problem is that we are exploring environments based upon irrational numbers through computer machinery which works with finite rationals ! ( Alessandro Rosa )
"西格尔圆盘是(最大)域,在其上,全纯映射与旋转相共轭,其角度除以一圈称为旋转数。" - A Cheritat[1]
因为无理数集是不可数的[5],所以具有西格尔圆盘的 Julia 集的数量是无限的。
-
临界轨道趋向于弱吸引不动点。当点 c 沿无理内角的内射线从中心移动到边界时,临界轨道从一个点穿过螺旋形变为围绕不动点 alpha 的圆形。
-
黄金分割二次 Julia 集的临界轨道、内圆和外圆
西格尔圆盘的中心是无理的无差异周期点。
Mane 定理
"... 除其中心外,西格尔圆盘不能包含任何周期点、临界点,也不能包含任何临界点或周期点的迭代前像。另一方面,它可以包含临界点的迭代像。" [6]
在 c 位于主心形边界的情况下,Julia 集的中心分量是一个包含西格尔圆盘(及其中心)的分量。临界轨道是西格尔圆盘和中心分量的边界。所有其他分量都是此分量的预像(参见使用逆迭代的动画图像)。
By a classical (nontrivial) result of C.L. Siegel, for certain irrational values of the quadratic polynomial is locally linearizable at 0. That is, there exists a local conformal change of coordinate near zero on which this quadratic polynomial becomes the linear map . The maximal domain on which one has such a linearization is called the Sigel disk of that quadratic polynomial. There are fascinating, and mysterious, relations between the arithmetic properties of and the geometry of the Siegel disks. Davoud Cheraghi[7]
在数学中,共形半径是一种衡量从其内部一点 z 观察到的单连通平面域 D 大小的方式。与使用欧几里得距离(例如,以 z 为中心的最大内接圆的半径)的概念相反,这种概念非常适合在复分析中使用,特别是在共形映射和共形几何中。
定义 给定一个单连通域 D ⊂ C,和一个点 z ∈ D,根据黎曼映射定理,存在一个唯一的共形映射 f : D → D 到单位圆盘(通常称为统一化映射),其中 f(z) = 0 ∈ D 和 f′(z) ∈ R+。然后将 D 从 z 处的共形半径定义为
最简单的例子是半径为r的圆盘以其中心为视角的共形半径也是r,由一致化映射x ↦ x/r所示。更多示例见下文。
这个概念之所以有用,其中一个原因是它在共形映射下表现良好:如果φ : D → D′是一个共形双射,且z 在 D 中,则.
共形半径也可以表示为,其中 是 从 到 的调和扩展。
内半径
[edit | edit source]Siegel 圆盘的内半径 =
- 内圆的半径,其中以不动点为中心的内圆是 Siegel 圆盘内最大的圆。[10]
- Siegel 圆盘中心到临界轨道的最小距离
计算内半径的代码
Maxima CAS 代码
[edit | edit source]这里轨道是一个复数点 z 的列表。
f(z,c):=z*z+c $ GiveCriticalOrbit(c,iMax):= block( ER:2.0, /* Escape Radius */ z:0+0*%i, /* first point = critical point */ orbit:[z], if (abs(z)>ER) then return(orbit), i:0, loop, /* compute forward orbit */ z:rectform(f(z,c)), orbit:endcons(z,orbit), i:i+1, if ((abs(z)<ER) and (i<iMax)) then go(loop), return(orbit) )$ /* find fixed point alfa */ GiveFixed(c):= float(rectform((1-sqrt(1-4*c))/2))$ /* distance between point z and fixed point zf */ GiveDistanceFromCenterTo(z):= abs(z-zf)$ /* inner radius of Siegel Disc ; criticla orbit is a boundary of SD */ GiveInnerRadiusOf(orbit):=lmin(map(GiveDistanceFromCenterTo,orbit))$ /* outer radius of Siegel Disc ; criticla orbit is a boundary of SD */ GiveOuterRadiusOf(orbit):=lmax(map(GiveDistanceFromCenterTo,orbit))$ /*------------ const ---------------------------------*/ c:0.113891513213121 +0.595978335936124*%i; /* fc(z) = z*z + c */ NrPoints:400000; /* ----------- main ---------------------------------------------------*/ zf:GiveFixed(c); /* fixed point = center of Siegel disc */ orbit:GiveCriticalOrbit(c,NrPoints)$ innerRadius: GiveInnerRadiusOf(orbit) ; outerRadius: GiveOuterRadiusOf(orbit) ;
C 代码
[edit | edit source]double GiveInternalSiegelDiscRadius(complex double c, complex double a)
{ /* compute critical orbit and finds smallest distance from fixed point */
int i; /* iteration */
double complex z =0.0; /* critical point */
/* center of Siegel disc = a */
double d; // distance
double dMin = 2.0;
for (i=0;i<=40000 ;i++) /* to small number of iMax gives bad result */
{
z = z*z + c;
/* */
d = cabs(z - a);
if (d < dMin) dMin = d; /* smallest distance */
}
return dMin;
}
外半径
[edit | edit source]Siegel 圆盘的外半径 = 外圆的半径。
以不动点为中心的,包含 Siegel 圆盘的最小圆是外圆。
C 代码
double GiveExternalSiegelDiscRadius(complex double c, complex double a)
{ /* compute critical orbit and finds smallest distance from fixed point */
int i; /* iteration */
double complex z =0.0; /* critical point */
/* center of Siegel disc = a */
double d; // distance
double dMax = 0.0;
for (i=0;i<=40000 ;i++) /* to small number of iMax gives bad result */
{
z = z*z + c;
/* */
d = cabs(z - a);
if (d > dMax) dMax = d; /* biggest distance */
}
return dMax;
}
折叠
[edit | edit source]在 scholaredia 中折叠[11]
Siegel 圆盘内爆
[edit | edit source]" ... 对乘子的微小变化可能会导致 Siegel 圆盘内爆 - 它的内半径坍缩为零 " [12]
例子
- 从旋转数为 [0;1,1,1,1,1, ...]= 0.618033988957902 的黄金分割 Siegel 圆盘到旋转数(内角)为 5/8 = [0;1,1,1,1,1] 的抛物线 Julia 集
- Siegel 圆盘在抛物线内爆下的半连续性 : P(n) = [0, 2, 2, n + r],其中 r = (√5−1)/ 2 ,前三张图片显示了 P(n) 的 Siegel 圆盘,其中 n 分别为 10、500、10000,最后一张图片是 p/q = 2/5 的虚拟 Siegel 圆盘,它们趋向于此。这里 P(n) > p/q。[13]
类型
[edit | edit source]对于 c
- 在主心形的边界上是围绕不动点 alfa 的 Siegel 圆盘
- 在周期为 n 的分量的边界上是围绕 n 周期点的周期性 Siegel 圆盘
这些 Siegel 圆盘是
- 有界的(因为 Julia 集是有界的)
- 一般情况下,不光滑(不可微)
围绕不动点
[edit | edit source]- Julia 集由无数条曲线构成,这些曲线将开区域包围起来
- 将每个区域映射到“更大的”区域,直到到达包含不动点的区域
- 在包含 Siegel 圆盘的分量内部, 将不变循环上的点绕不动点旋转[14]
换句话说
" 有无限多个连通分支。其中一个包含了不动点 α。它被 映射到自身。这就是西格尔圆盘。
"西格尔圆盘是一个连通分支,它有无穷多个原像。如果你在 z = 0 处以较大的 nmax 放大,你会看到有两个分支在 z=0 处相交。"(沃尔夫·荣格)
可视化
[edit | edit source]动力学平面的可视化
- 临界点的正向迭代的临界轨道
- 通过绘制临界轨道来得到朱利亚集
- 中心分支的边界
- 通过临界轨道的反向迭代来得到整个朱利亚集
- 内部
- 由克里斯·金通过平均速度获得的整个内部
- 西格尔圆盘轨道,通过对西格尔圆盘内部或边界上的点的正向迭代获得[15]
克里斯·金的平均速度
[edit | edit source]非吸引盆地和花瓣的离散速度:对于不逃逸的点,计算轨道上的平均离散速度[16]
-
在 c 中
-
在 octave 中
优化
[edit | edit source]另请参见 通用方法
技巧 1
[edit | edit source]如果点 (z0 或其正向图像 zn) 在内圆内部,则它就是内部点。
示例
[edit | edit source]方法
[edit | edit source]- 连分数
- t = [3,2,1000,1,.] = 0.28573467254058817026888613062003 。它给出 c = -0.096294753554390530825955047963 + 0.648802699422348309293468536773i[17]
- 已知的无理数近似值
- 1/pi
- 欧拉数
- 黄金分割
- 数字的根,比如
- 平方根:sqrt(2), sqrt(3), sqrt(5), sqrt(7), sqrt(8), sqrt(15), sqrt(21), sqrt(35), sqrt(49), SQRT(65), sqrt(99), SQRT(100), SQRT(101), SQRT(121), sqrt(200), sqrt(278),
- 立方根,cbrt(3),
- 对数,比如
- 上述数字的后代
- 比如 1/pi
- 无理数和有理数的和 : 如果 t 是一个无理数,r 是一个有理数,那么 t+r 是无理数
- 快速收敛的级数 [18]
序列
[edit | edit source]连分数序列:[19]
- [1, 1, 1, . . .]
- [1, 1, 1, 20, 1, . . .]
- [1, 1, 1, 20, 1, 1, 1, 30, 1, . . .]
从西格尔圆盘到 Lea-Fatou 花的 序列
- 普通
- 数字化
- 虚拟
- Leau-Fatou 花
cf(t) | t | c(t) | 内部地址 | 中心 z | 周期 | 内部 R | 外部 R |
---|---|---|---|---|---|---|---|
[0; 1, 1, 1,...] | 0.618033988957902 | -0.390540870218399-0.586787907346969i | -0.368684439039160-0.337745147130762i | 1 | 0.25 | 0.4999 | |
[0;3,2,1000,1...] | .2857346725405882 | 0.113891513213121+0.595978335936124i | -0.111322907374331+0.487449700270424i | 1 | .1414016645283217 | .5285729063154562 | |
值
[edit | edit source]- t = 0.3119660900888915 = [0, 3, 4, 1, 6, 1, 1, 65, 7, 1, 2, 63] ; c = -0.01183223669 + 0.63816572702*%i [20]
- t = 0.3572354109849235 = [0, 2, 1, 3, 1, 54, 2, 1, 17, 1, 1, 1, 12, 1, 1, 1, 2, 2] ; c = -0.256625459 + 0.6345309*%i
- t = 0.3573615246360573 = [0, 2, 1, 3, 1, 22, 1, 1, 4, 1, 5, 1, 4, 3, 2, 21] ; c = -0.257341 + 0.634456*%i
主心形曲线的边界
[edit | edit source]- 杰伊·希尔的示例[21]
-
黄金分割的动力学平面,包括临界轨道和西格尔圆盘内部的一些轨道
-
黄金分割的二次西格尔圆盘,内部用轨道上的平均离散速度着色
-
高分辨率灰色版本
-
用 IIM/J 绘制的黄金分割的朱利亚集
-
动画版本 - 最高到 100 级
-
具有旋转数为 [3,2,1000,1...] 的西格尔圆盘的二次多项式的朱利亚集
参数化
[edit | edit source]主心形曲线的边界由 2 个联立方程 描述
- 描述 f 下的不动点(周期 1)
- 描述不动点的乘子[22](稳定性)(它应该是无差异的)
其中
第一个方程
第二个方程
因此,我们得到一个函数,描述了参数 c 和内部角度 t 之间的关系
此函数用于计算
- 主心形的边界点 c
- 当 t 为无理数时,填充的 Julia 集具有西格尔圆盘
我们可以计算边界点 c
周期为 1 的双曲分量(主心形)的边界点,方法是使用给定 t
t = atan2(); // is the argument in radians.
cx = 0.5*cos(t) - 0.25*cos(2*t);
cy = 0.5*sin(t) - 0.25*sin(2*t);
使用任意步长增加 t 后,可以计算新的参数
t += 0.01; // It is increased by 0.01 so 1/628 turns. // From the new t the new parameter c is computed ..
在刘维尔数附近
[edit | edit source]t = 0.7656250596046448 给出
- c = 0.294205040086005 -0.448819580822501*i 在主心形上
- c = -0.975495621741693 -0.248796172491005*i 在周期为 2 的分量上
- c = -0.219419079596579 +0.741123657495634*i 在沿内部射线 1/3 的周期为 3 的分量上
- c = -1.749557112879525 -0.008859942836393*i 在主触角上的周期为 3 的小心形上
其中 ! 表示阶乘。
图片
Maxima cas 代码
f(n) := n^-1 + n^-2 +n^-6 +n^-24; %i2) f(2); 12845057 (%o2) -------- 16777216 (%i3) float(f(2)); (%o3) 0.7656250596046448 (%i4) float(f(3)); (%o4) 0.445816186560468 (%i5) f(3); 125911658926 (%o5) ------------ 282429536481 (%i6) f(5); 14308929443359376 (%o6) ----------------- 59604644775390625 (%i7) f(6); 921453486852538369 (%o7) ------------------- 4738381338321616896 (%i8) f(7); 31280196802261814842 (%o8) --------------------- 191581231380566414401 (%i9) f(8); 664100801052053340161 (%o9) ---------------------- 4722366482869645213696 (%i10) 8^24; (%o10) 4722366482869645213696
- 1/(2*pi) = 0.1591549430918953
- 2/(2*pi) = 0.3183098861837907
- 3/(2*pi) = 0.477464829275686
- 4/(2*pi) = 0.6366197723675814
- 5/(2*pi) = 0.7957747154594768
- 6/(2*pi) = 0.954929658551372
图片
- Kerry Mitchell 的示例 Kerry Mitchell 的示例
旋转数 t 等于黄金分割(恰好是黄金分割的共轭,[23] 比较黄金分割的 Julia 集,它是断开的 Julia 集 [24]
在 Maxima CAS 中
(%i2) a:[0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] (%o2) [0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] (%i3) t:cfdisrep(a) (%o3) 1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/1)))))))))))))))))))))) (%i4) float(t) (%o4) 0.618033988957902 (%i5) l:%e^(2*%pi*%i*t) (%o5) %e^(-(17711*%i*%pi)/23184) (%i6) c:(l*(1-l/2))/2 (%o6) ((1-%e^(-(17711*%i*%pi)/23184)/2)*%e^(-(17711*%i*%pi)/23184))/2 (%i7) float(rectform(c)) (%o7) -.5867879078859505*%i-.3905408691260131
所以
与 进行比较
- 通过组合方法描绘的二次 Julia 集[26]
- Curtis T McMullen 的黄金分割 Siegel 圆盘 [27]
- Jim Muth 的 Siegel 圆盘分形 [28]
- Davoud Cheraghi 的 Siegel 圆盘 [29]
- 来自 Roger Bagula 的 Mathematica 中更好的 Siegel 圆盘程序 [30]
- Xander 的图像 [31]
- Arnaud Chéritat 的图片 [32]
- Faber 证明的无理数
有两条射线落在临界点 z=0 上,它们的角为:[33]
这里[34]
其中 2 的幂形成斐波那契数列 :[35]
这些射线是落在临界值的射线 的原像。
算法是这样的
- 从有理数 p/q 开始(q 是数字的个数)
- 使用例如:wolfram alpha 找到 p/q 的 连分数
- 让我们选择 2/7 = [0; 3, 2]
- 对于从 0 到 10 的 n,计算旋转数 = t(n) = [0;3, 2 , 10^n, golden_ratio]
- 对于每个 t,计算乘子 m = e^(2*pi*i*t) 和 c = (m*(1-m/2))/2,
- 对于每个 c,绘制临界轨道
-
c = -0.749998153581339 +0.001569040474910 i 的 Siegel 圆盘
-
内折 Siegel 圆盘
-
使用外部射线的动画。最后一帧显示抛物线 Julia 集
[0;2,10^0, GoldenRatio] = 0.3819660112501051517954131656343618822796908201942371378645513772947395371810975502927927958106088625[36] [0;2,10^1, GoldenRatio] = 0.4775140100981009996157078147705459192853678713412804123092036673992538239565035505055878663397199776 [0;2,10^2, GoldenRatio] = 0.4975276418049443654168822249489777631733396751888937557910272646236455872099717190261209452982670182 [0;2,10^3, GoldenRatio] = 0.4997502791963461829064406841975638383643273854865268095992275328965717970298619920531024931799175222 [0;2,10^4, GoldenRatio] = 0.4999750027947725068093934556288852812751613102402893275180237493139184231871314468863992103480081398 [0;2,10^5, GoldenRatio] = 0.4999975000279505372222411883578948194038778053684924551662056284491619191237767514609446551752982620 [0;2,10^6, GoldenRatio] ≈ 0.4999997500002795081846878230972820064874630120375394060599983649731088601118927011908445914889153575 [0;2,10^7, GoldenRatio] ≈ 0.4999999750000027950846593747720590697092705648336656666550099352279885262457471130077351190950368647 [0;2,10^8, GoldenRatio] ≈ 0.4999999975000000279508494062473746989708466400627903143635595029928608488311534417391176743667414601 [0;2,10^9, GoldenRatio] = 0.4999999997500000002795084968749737124005323296851266699307427070578490529472905394986264318888387868 [0;2,10^10, GoldenRatio] ≈ 0.4999999999750000000027950849715622371205464056480586232583076030201151399460674665945145904063730995 [0;2,10^11, GoldenRatio] ≈ 0.4999999999975000000000279508497184348712051181647153557573019083692657334910230489541137897282568504 [0;2,10^12, GoldenRatio] ≈ 0.4999999999997500000000002795084971871612120511470579770310133815923588852631868226288826667637222837 [0;2,10^13, GoldenRatio] ≈ 0.4999999999999750000000000027950849718744246205114671208526574427310807059077461659968395909016599809 [0;2,10^14, GoldenRatio] ≈ 0.4999999999999975000000000000279508497187470587051146708626348091578511118332834054112155667123629005 [0;2,10^15, GoldenRatio] ≈ 0.4999999999999997500000000000002795084971874733995511467085917589150515616367008796489196018543201296 [0;2,10^16, GoldenRatio] ≈ 0.4999999999999999750000000000000027950849718747368080114670859141302328629213837245072986771954833911 [0;2,10^17, GoldenRatio] ≈ 0.4999999999999999975000000000000000279508497187473708926146708591409564368639443385654331302200729603 [0;2,10^18, GoldenRatio] ≈ 0.4999999999999999997500000000000000002795084971874737117386467085914095297794629164357828552071705414 [0;2,10^19, GoldenRatio] ≈ 0.4999999999999999999750000000000000000027950849718747371201989670859140952943357115116628413693411086 [0;2,10^20, GoldenRatio] ≈ 0.4999999999999999999975000000000000000000279508497187473712048021708591409529430112233513589149747868 ... [0;2] = 1/2 = 0.5
使用四倍精度
t(0) = 3.81966011250105151795413165634361882279690820194237137864551377e-01 ; c = -3.90540870218400050669762600713798485817583715938583500790716491e-01 ; 5.86787907346968751196714643055715840096745752123320842032245424e-01 t(1) = 4.77514010098100999615707814770545919285367871341280412309203667e-01 ; c = -7.35103725789203166246364354183070697092321099215970115885457098e-01 ; 1.40112549815936743590686010452273467218741353649054870130630558e-01 t(2) = 4.97527641804944365416882224948977763173339675188893755791027265e-01 ; c = -7.49819025417749776930986763368388660297294249313031793877713589e-01 ; 1.55327228158391795314525351457527867568101147692293037994954915e-02 t(3) = 4.99750279196346182906440684197563838364327385486526809599227533e-01 ; c = -7.49998153581339423261635407668242134664913541791449158951684018e-01 ; 1.56904047490965613194389295941701415441031256575211288282884094e-03 t(4) = 4.99975002794772506809393455628885281275161310240289327518023749e-01 ; c = -7.49999981498629125645545136832080395069079925634197165921129604e-01 ; 1.57062070991569266952536106210409130728490029437750411952649155e-04 t(5) = 4.99997500027950537222241188357894819403877805368492455166205628e-01 ; c = -7.49999999814949055379035496840776829777984829652802229165703441e-01 ; 1.57077876479293075511736069683515881947782844720535147967721515e-05 t(6) = 4.99999750000279508184687823097282006487463012037539406059998365e-01 ; c = -7.49999999998149453312747388186444210086067957518121660969151546e-01 ; 1.57079457059156244743576144811256589754652192800174232944684020e-06 t(7) = 4.99999975000002795084659374772059069709270564833665666655009935e-01 ; c = -7.49999999999981494495885914313759501577872560098720076587742563e-01 ; 1.57079615117453182906803046090425827728536858759594155863970088e-07 t(8) = 4.99999997500000027950849406247374698970846640062790314363559503e-01 ; c = -7.49999999999999814944921617531908891370473818724298060108792696e-01 ; 1.57079630923285982648802540286825950414334929521039394902627564e-08 t(9) = 4.99999999750000000279508496874973712400532329685126669930742707e-01 ; c = -7.49999999999999998149449178933702694145524879491347408142864355e-01 ; 1.57079632503869293681972526129998193269783324874397448954896142e-09 t(10) = 4.99999999975000000002795084971562237120546405648058623258307603e-01 ; c = -7.49999999999999999981494491752095410030080568840077963364830374e-01 ; 1.57079632661927625095878938346134344643704271149725816320948648e-10 t(11) = 4.99999999997500000000027950849718434871205118164715355757301908e-01 ; c = -7.49999999999999999999814944917483712483337770357969922549543000e-01 ; 1.57079632677733458240375473417333652732358282974043728923647563e-11 t(12) = 4.99999999999750000000000279508497187161212051147057977031013382e-01 ; c = -7.49999999999999999999998149449174799883216409502184216102177862e-01 ; 1.57079632679314041554856185862662707966424239622019267641300599e-12 t(13) = 4.99999999999975000000000002795084971874424620511467120852657443e-01 ; c = -7.49999999999999999999999981494491747961590547126303840172625197e-01 ; 1.57079632679472099886304567696577418001577729533565273081497266e-13 t(14) = 4.99999999999997500000000000027950849718747058705114670862634809e-01 ; c = -7.49999999999999999999999999814944917479578663854294268739087328e-01 ; 1.57079632679487905719449408985862706763478042275954257084690447e-14 t(15) = 4.99999999999999750000000000000279508497187473399551146708591759e-01 ; c = -7.49999999999999999999999999998149449174795749396925973912562169e-01 ; 1.57079632679489486302763893145850173816965190682509858763917154e-15 t(16) = 4.99999999999999975000000000000002795084971874736808011467085914e-01 ; c = -7.49999999999999999999999999999981494491747957456727642770350276e-01 ; 1.57079632679489644361095341562159509904086589961983101670245908e-16 t(17) = 4.99999999999999997500000000000000027950849718747370892614670859e-01 ; c = -7.49999999999999999999999999999999814944917479574530034810734727e-01 ; 1.57079632679489660166928486403793549406616456447514036426396814e-17 t(18) = 4.99999999999999999750000000000000000279508497187473711738646709e-01 ; c = -7.49999999999999999999999999999999998149449174795745263106490379e-01 ; 1.57079632679489661747511800887956984415807620355720412842525869e-18 t(19) = 4.99999999999999999975000000000000000002795084971874737120198967e-01 ; c = -7.49999999999999999999999999999999999981494491747957452593823287e-01 ; 1.57079632679489661905570132336373328227316118501557102010628498e-19 t(20) = 4.99999999999999999997500000000000000000027950849718747371204802e-01 ; c = -7.49999999999999999999999999999999999999814944917479574525900991e-01 ; 1.57079632679489661921375965481214962611572862167871366529561451e-20 5.00000000000000000000000000000000000000000000000000000000000000e-01 c = -7.50000000000000000000000000000000000000000000000000000000000000e-01 ; 0.00000000000000000000000000000000000000000000000000000000000000e+00
1/3 = [0; 3] = 0.3333333..... = 0.(3)
/* Maxima CAS batch file */ kill(all)$ remvalue(all)$ /* a = [1, 1, ...] = golden ratio */ g: float((1+sqrt(5))/2)$ GiveT(n):= float(cfdisrep([0,3,10^n,g]))$ GiveC(t):= block( [l, c], l:%e^(2*%pi*%i*t), c : (l*(1-l/2))/2, c:float(rectform(c)), return(c) )$ compile(all)$ for n:0 step 1 thru 10 do ( t:GiveT(n), c:GiveC(t), print("n=" ,n ," ; t= ", t , "; c = ", c) );
结果
n= 0 t= 0.276393202250021 c = 0.5745454151066983 %i + 0.1538380639536643 n= 1 t= 0.3231874668087892 c = 0.6469145331346998 %i - 0.07039249652637808 n= 2 t= 0.3322326933513446 c = 0.649488031636116 %i - 0.1190170769366243 n= 3 t= 0.3332223278292314 c = 0.6495187369145559 %i - 0.1243960357918423 n= 4 t= 0.3333222232791965 c = 0.6495190496732967 %i - 0.1249395463818514 n= 5 t= 0.3333322222327929 c = 0.6495190528066728 %i - 0.1249939540657306 n= 6 t= 0.3333332222223279 c = 0.6495190528380125 %i - 0.1249993954008478 n= 7 t= 0.3333333222222233 c = 0.6495190528383257 %i - 0.1249999395400275 n= 8 t= 0.3333333322222222 c = 0.6495190528383289 %i - 0.1249999939540021 n= 9 t= 0.3333333332222222 c = 0.649519052838329 %i - 0.1249999993954 n= 10 t= 0.3333333333222222 c = 0.649519052838329 %i - 0.1249999999395399 (%i1) a:[0,3,a,g]; (%o1) [0, 3, a, g] (%i2) cfdisrep(a); 1 (%o2) --------- 1 3 + ----- 1 a + - g (%i3)
四精度 (t 和 c)
// [email protected]:adammajewski/InfoldingSiegelDisk_in_c_1over3_quaddouble.git t(0) = 2.76393202250021030359082633126872376455938164038847427572910275e-01 c = 1.53838063953664121728826496636884090757364247198001213740163411e-01 ; 5.74545415106698547533205192239966882171974656527110206599567294e-01 t(1) = 3.23187466808789167460075188398563024584074865168574811248120429e-01 c = -7.03924965263779817446805013170440359580350303484669206412737432e-02 ; 6.46914533134699876497054948648970463828561836818357035393585013e-01 t(2) = 3.32232693351344645328281111249254263489588693253128095562021379e-01 c = -1.19017076936624259031145944667596002534849695014545153950004772e-01 ; 6.49488031636116063199566861137419722741268462810784951116992269e-01 t(3) = 3.33222327829231396180972123516749255293978654448636072108442295e-01 c = -1.24396035791842227723833496314974550377900499387491577355907843e-01 ; 6.49518736914555954950215798854805983039885153673988260646103979e-01 t(4) = 3.33322223279196467461199806968881974980654735721758806121437081e-01 c = -1.24939546381851514024915251452349793356883503222467666248987991e-01 ; 6.49519049673296680160381595728499835459227600854334414827754792e-01 t(5) = 3.33332222232792869679683559108320427563171464137271516297451542e-01 c = -1.24993954065730675441065991629838614047426783311966520549106346e-01 ; 6.49519052806672859063863722773813069312955136848755592503084124e-01 t(6) = 3.33333222222327929601887145303917917465162347855208962292566660e-01 c = -1.24999395400848041352293443820430989442841091304288844173462574e-01 ; 6.49519052838012418008903728036348898528045582108441153259758357e-01 t(7) = 3.33333322222223279296923970287377310413140932425289152909012301e-01 c = -1.24999939540027553391850682937180513243494903336945859380511500e-01 ; 6.49519052838325819396349608234642964505989043061737603462233217e-01 t(8) = 3.33333332222222232792970144802560581866962241709924341887457124e-01 c = -1.24999993954002182831269818316294274223873134947476282441764677e-01 ; 6.49519052838328953416022146474675036126754173503570601306155105e-01 t(9) = 3.33333333222222222327929702353125377874576632652638574699840874e-01 c = -1.24999999395400212558047347868208906283402972461774034404632366e-01 ; 6.49519052838328984756224669944909300404586792219705302525018521e-01 t(10) = 3.33333333322222222223279297024436353559326388564904699626466712e-01 c = -1.24999999939540021198553937965723010802762347867693302140297851e-01 ; 6.49519052838328985069626700977700316581410665652851539203616381e-01 t(11) = 3.33333333332222222222232792970245268635374696979418341612961499e-01 c = -1.24999999993954002119282885827879858604573185189849864410972761e-01 ; 6.49519052838328985072760721293826315500672008735227141791647866e-01 t(12) = 3.33333333333222222222222327929702453591453528488135105883396848e-01 c = -1.24999999999395400211922563503100579972022557444713095237600026e-01 ; 6.49519052838328985072792061496993373578630511176383107487756736e-01 t(13) = 3.33333333333322222222222223279297024536819635066408216696619311e-01 c = -1.24999999999939540021192199099513183456854230374819467960534760e-01 ; 6.49519052838328985072792374899025049957498862929395598811798211e-01 t(14) = 3.33333333333332222222222222232792970245369101450445609885075510e-01 c = -1.24999999999993954002119219337443349599800479106023686175774584e-01 ; 6.49519052838328985072792378033045366727085635213738283716661855e-01 t(15) = 3.33333333333333222222222222222327929702453691919604237626654112e-01 c = -1.24999999999999395400211921928019255272520717007610023985861823e-01 ; 6.49519052838328985072792378064385569894787301025348531521608111e-01 t(16) = 3.33333333333333322222222222222223279297024536920101142157794353e-01 c = -1.24999999999999939540021192192744674730377477910267401190215182e-01 ; 6.49519052838328985072792378064698971926464323481553400821453061e-01 t(17) = 3.33333333333333332222222222222222232792970245369201916521359471e-01 c = -1.24999999999999993954002119219273894965069001852640340429175752e-01 ; 6.49519052838328985072792378064702105946781093711913538281273390e-01 t(18) = 3.33333333333333333222222222222222222327929702453692020070313376e-01 c = -1.24999999999999999395400211921927383771427212725879688582341355e-01 ; 6.49519052838328985072792378064702137286984261414222937744638416e-01 t(19) = 3.33333333333333333322222222222222222223279297024536920201608234e-01 c = -1.24999999999999999939540021192192738319891924397994124922164696e-01 ; 6.49519052838328985072792378064702137600386293091246037537360833e-01 t(20) = 3.33333333333333333332222222222222222222232792970245369202016987e-01 c = -1.24999999999999999993954002119219273831416684471053474052374312e-01 ; 6.49519052838328985072792378064702137603520313408016268541086146e-01 1/3 = 3.33333333333333333333333333333333333333333333333333333333333333e-01 c = -1.25000000000000000000000000000000000000000000000000000000000000e-01 ; 6.49519052838328985072792378064702137603551970178892735520927617e-01
来自 scholarpedia 的示例[37]
fpprec:60; a:[4,4,1,2,4,4,4,4,1,1,1,1,1,1,1,1,1]; b:cfdisrep(a); c:bfloat(b); e0:bfloat(cfdisrep([0,1,2,4,4,c])); e1:bfloat(cfdisrep([0,1,2,4,4,10,c])); e2:bfloat(cfdisrep([0,1,2,4,4,10^2,c])); e3:bfloat(cfdisrep([0,1,2,4,4,10^3,c])); e4:bfloat(cfdisrep([0,1,2,4,4,10^4,c])); e5:bfloat(cfdisrep([0,1,2,4,4,10^5,c])); e6:bfloat(cfdisrep([0,1,2,4,4,10^6,c])); e7:bfloat(cfdisrep([0,1,2,4,4,10^7,c])); e8:bfloat(cfdisrep([0,1,2,4,4,10^8,c])); e9:bfloat(cfdisrep([0,1,2,4,4,10^9,c])); e10:bfloat(cfdisrep([0,1,2,4,4,10^10,c])); d01:e0-e1; d12:e1-e2; d23:e2-e3; d34:e3-e4; d45:e4-e5; d56:e5-e6; d67:e6-e7; d78:e7-e8; d89:e8-e9; d910:e9-e10; plot2d( [discrete, [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [ e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10] ]); plot2d( [discrete, [ 1, 2, 3, 4, 5, 6, 7, 8, 9,10], [ d01, d12, d23, d34, d45, d56, d67, d78, d89, d910] ]);
结果
/* http://maxima-online.org/?inc=r972897020*/ (%i1) fpprec:60; (%o1) 60 (%i2) a:[4,4,1,2,4,4,4,4,1,1,1,1,1,1,1,1,1]; (%o2) [4, 4, 1, 2, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1] (%i3) b:cfdisrep(a); 1 (%o3) 4 + ------------------------------------------------------------- 1 4 + --------------------------------------------------------- 1 1 + ----------------------------------------------------- 1 2 + ------------------------------------------------- 1 4 + --------------------------------------------- 1 4 + ----------------------------------------- 1 4 + ------------------------------------- 1 4 + --------------------------------- 1 1 + ----------------------------- 1 1 + ------------------------- 1 1 + --------------------- 1 1 + ----------------- 1 1 + ------------- 1 1 + --------- 1 1 + ----- 1 1 + - 1 (%i4) c:bfloat(b); (%o4) 4.21317492083944457390374624758406097076199745041327978287391b0 (%i5) e0:bfloat(cfdisrep([0,1,2,4,4,c])); (%o5) 6.90983385919269333377918690283855111536837789999636063622128b-1 (%i6) e1:bfloat(cfdisrep([0,1,2,4,4,10,c])); (%o6) 6.90940653590858345205900333693231459583929903277216782489572b-1 (%i7) e2:bfloat(cfdisrep([0,1,2,4,4,10^2,c])); (%o7) 6.90912381108070743953290526690429251279660195160237673633147b-1 (%i8) e3:bfloat(cfdisrep([0,1,2,4,4,10^3,c])); (%o8) 6.90909421331077674912831355964859580252020147075327146840293b-1 (%i9) e4:bfloat(cfdisrep([0,1,2,4,4,10^4,c])); (%o9) 6.90909123965376225147306218871548821073377014383362752163859b-1 (%i10) e5:bfloat(cfdisrep([0,1,2,4,4,10^5,c])); (%o10) 6.90909094214860373154103745626419162194365585020091374566415b-1 (%i11) e6:bfloat(cfdisrep([0,1,2,4,4,10^6,c])); (%o11) 6.90909091239669264887898182284536032143262445829248943506691b-1 (%i12) e7:bfloat(cfdisrep([0,1,2,4,4,10^7,c])); (%o12) 6.90909090942148758764580793509997058314465248663422318011972b-1 (%i13) e8:bfloat(cfdisrep([0,1,2,4,4,10^8,c])); (%o13) 6.90909090912396694199216055201332263713180254323741379104146b-1 (%i14) e9:bfloat(cfdisrep([0,1,2,4,4,10^9,c])); (%o14) 6.9090909090942148760314918534473410035349593667510644807155b-1 (%i15) e10:bfloat(cfdisrep([0,1,2,4,4,10^10,c])); (%o15) 6.90909090909123966942147194332785516326702737819678667743891b-1 (%i16) d01:e0-e1; (%o16) 4.27323284109881720183565906236519529078867224192811325562048b-5 (%i17) d12:e1-e2; (%o17) 2.82724827876012526098070028022083042697081169791088564253857b-5 (%i18) d23:e2-e3; (%o18) 2.95977699306904045917072556967102764004808491052679285309819b-6 (%i19) d34:e3-e4; (%o19) 2.97365701449765525137093310759178643132691964394676434841921b-7 (%i20) d45:e4-e5; (%o20) 2.97505158519932024732451296588790114293632713775974431973635b-8 (%i21) d56:e5-e6; (%o21) 2.97519110826620556334188313005110313919084243105972446795396b-9 (%i22) d67:e6-e7; (%o22) 2.97520506123317388774538973828797197165826625494718990624414b-10 (%i23) d78:e7-e8; (%o23) 2.97520645653647383086647946012849943396809389078262402933403b-11 (%i24) d89:e8-e9; (%o24) 2.97520659606686985659816335968431764863493103259592529156942b-12 (%i25) d910:e9-e10; (%o25) 2.97520661001991011948584026793198855427780327658967717649496b-13
这些西格尔圆盘有 13 位数字。因此它将接近 t=n/13,可能是
这个数字是不可约的,它的十进制展开周期为 6 [38]
数值计算接近
它是不可约分数。它的十进制展开周期为 2 [39]
重要数字
8/13 = 0.6153846153846154 = [0; 1, 1, 1, 1, 2] 38/55 = 0.690909090909090(90) = [0; 1, 2, 4, 4] 9/13 = 0.692307692307(692307) = [0; 1, 2, 4]
Xavier Buff 和 Arnaud Cheritat 的示例[40]
α = ( 5 + 1)/2 = [1, 1, 1, 1, . . .],
α(1) = [1, 1, 1, 1, 1, 1, 25, 1, 1, 1, . . .]
α(2) = [1, 1, 1, 1, 1, 1, 25, 1010 , 1, 1, 1, . . .]
-
对 [0;1,1,1,.... 的有限 连分数 近似
-
[0;3,2,1000,1...] 朱利亚集的临界轨道、内圆和外圆
-
朱利亚集 [0;3,2,1000,1... ]
-
临界轨道
旋转数 t 为 :[41]
在 Maxima CAS 中,可以计算它
(%i2) kill(all) (%o0) done (%i1) a:[0,3,2,1000,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] (%o1) [0,3,2,1000,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] (%i2) t:cfdisrep(a) (%o2) (1)/(3+(1)/(2+(1)/(1000+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+ (1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) (%i3) float(t) (%o3) .2857346725405882 (%i4) l:%e^(2*%pi*%i*t) (%o4) %e^((2*%i*%pi)/(3+(1)/(2+(1)/(1000+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) (%i5) c:(l*(1-l/2))/2 (%o5) ((1-(%e^((2*%i*%pi)/(3+(1)/(2+(1)/(1000+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))/(2))*%e^((2*%i*%pi)/(3+(1)/(2+(1)/(1000+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))/(2) (%i6) float(rectform(c)) (%o6) .5959783359361234*%i+.1138915132131216
所以
t = .2857346725405882 c = 0.113891513213121 +0.595978335936124 i
如何找到 [3,2,1000,1,...] 的极限 ?
以下是 Bill Wood 的解释
"我不知道 Maxima 是否对连分数的代数了解很多,但它在破解推导的细节方面可能有所帮助。一个最有用的事实是
[a1, a2, a3, ...] = a1 + 1/[a2, a3, ...]
前提是连分数收敛。如果我们手动对 [3, 2, 1000, 1, 1, ...] 应用三次,我们会得到
3 + 1/(2 + 1/(1000 + 1/[1, 1, ...]))
现在众所周知 [1, 1, ...] 收敛到黄金分割 = (1+sqrt(5))/2。所以现在我们可以使用 Maxima 如下
(%i20) 3+(1/(2+(1/(1000+(1/((1+sqrt(5))/2)))))); 1 (%o20) ---------------------- + 3 1 ------------------ + 2 2 ----------- + 1000 sqrt(5) + 1 (%i21) factor(%o13); 7003 sqrt(5) + 7017 (%o21) ------------------- 2001 sqrt(5) + 2005 (%i22) %o21,numer; (%o22) 3.499750279196346
您将 a 设置为 [0, 3, 2, 1000, 1, 1, ...],根据我们的有用事实,它必须是 [3, 2, 1000, 1, 1, ...] 的倒数,实际上 3.499750279196346 的倒数是 0.2857346725405882,这正是您的 float(t) 评估到的结果,因此我们似乎得到了一致的结果。
如果为您提供的链接上显示的所有旋转数的连分数最终都重复 1,那么我上面使用的方法可用于确定它们的极限作为 sqrt(5) 中线性表达式的比率。" Bill Wood
检查分数:[42]
2/7 = [0; 3, 2] = 0.285714285714285714285714285714285714285714285714285714285... = 0.(28571)
/* Maxima CAS batch file */ kill(all)$ remvalue(all)$ /* a = [1, 1, ...] = golden ratio */ g: float((1+sqrt(5))/2)$ GiveT(n):= float(cfdisrep([0,3,2,10^n,g]))$ GiveC(t):= block( [l, c], l:%e^(2*%pi*%i*t), c : (l*(1-l/2))/2, c:float(rectform(c)), return(c) )$ compile(all)$ for n:0 step 1 thru 10 do ( t:GiveT(n), c:GiveC(t), print("n=", n , " ; t= ", t, " ; c = ", c) );
以及结果
"n="" "0" "" ; t= "" "0.2956859994078892" "" ; c = "" "0.6153124581224951*%i+0.06835556662164869" " "n="" "1" "" ; t= "" "0.2875617458610296" "" ; c = "" "0.599810068302661*%i+0.1057522049785167" " "n="" "2" "" ; t= "" "0.285916253540726" "" ; c = "" "0.5963646240901801*%i+0.1130872227062027" " "n="" "3" "" ; t= "" "0.2857346725405881" "" ; c = "" "0.5959783359361234*%i+0.1138915132131216" " "n="" "4" "" ; t= "" "0.2857163263170416" "" ; c = "" "0.5959392401496606*%i+0.1139727184036316" " "n="" "5" "" ; t= "" "0.2857144897937824" "" ; c = "" "0.5959353258460209*%i+0.1139808467588366" " "n="" "6" "" ; t= "" "0.2857143061224276" "" ; c = "" "0.5959349343683512*%i+0.1139816596727942" " "n="" "7" "" ; t= "" "0.2857142877551018" "" ; c = "" "0.5959348952201112*%i+0.1139817409649742" " "n="" "8" "" ; t= "" "0.2857142859183673" "" ; c = "" "0.5959348913052823*%i+0.1139817490942002" " "n="" "9" "" ; t= "" "0.2857142857346939" "" ; c = "" "0.5959348909137995*%i+0.1139817499071228" " "n="" "10" "" ; t= "" "0.2857142857163265" "" ; c = "" "0.5959348908746511*%i+0.1139817499884153" "
或使用四倍双精度(qd 库)
./a.out
t(0) = 2.95685999407889202537083517598191479880016272621355940112392033e-01
t(1) = 2.87561745861029587995763349374215634699576366286473943622953355e-01
t(2) = 2.85916253540726005296290351777281930430489555597203400050155169e-01
t(3) = 2.85734672540588170268886130620030074831025799037914834916050614e-01
t(4) = 2.85716326317041655001121670485871240052920659174284332597727197e-01
t(5) = 2.85714489793782460278353122604001584582831972498394265344044955e-01
t(6) = 2.85714306122427620319960416932943500595980573209849938259909447e-01
t(7) = 2.85714287755101827223406574888790339883583192331314008460721020e-01
t(8) = 2.85714285918367344802846109454092778340593443209054635310671634e-01
t(9) = 2.85714285734693877529661113954572642424219379874139361821960174e-01
t(10) = 2.85714285716326530612031305016895554055165716643985018539739541e-01
t(11) = 2.85714285714489795918365211009352427817161964062263710683311655e-01
2/7 = 2.85714285714285714285714285714285714285714285714285714285714286e-01
(%i7) cf(2/9); (%o7) [0, 4, 2] (%i8) cf(2/9 + 0.1); (%o8) [0, 3, 9, 1, 2] (%i9) cf(2/9 + 0.01); (%o9) [0, 4, 3, 3, 1, 3, 4] (%i10) cf(2/9 + 0.001); (%o10) [0, 4, 2, 11, 1, 9, 8] (%i11) cf(2/9 + 0.0001); (%o11) [0, 4, 2, 123, 81] (%i12) cf(2/9 + 0.00001); (%o12) [0, 4, 2, 1234, 8, 10] (%i13) cf(2/9 + 0.000001); (%o13) [0, 4, 2, 12345, 4, 3, 1, 4] (%i14) cf(2/9 + 0.0000001); (%o14) [0, 4, 2, 123456, 2, 1, 8] (%i15) cf(2/9 + 0.00000001); (%o15) [0, 4, 2, 1234567, 2] (%i16) cf(2/9 + 0.000000001); (%o16) [0, 4, 2, 12345678] (%i17) cf(2/9 + 0.0000000001); (%o17) [0, 4, 2, 123456806] (%i18) cf(2/9 + 0.00000000001); (%o18) [0, 4, 2, 1234571860] (%i19) cf(2/9 + 0.000000000001); (%o19) [0, 4, 2, 12345935203] (%i20) cf(2/9 + 0.0000000000001); (%o20) [0, 4, 2, 123453937153] (%i21) cf(2/9 + 0.00000000000001); (%o21) [0, 4, 2, 1234539371537] (%i22) cf(2/9 + 0.000000000000001); (%o22) [0, 4, 2, 12794317123211] (%i23)
- 是否有可能找到将圆映射到西格尔圆盘的函数 ?
- 虚拟西格尔圆盘和抛物线临界轨道之间会发生什么 ?
落在克莱默和西格尔参数点 c 上的外部射线的角度是多少 ?
那些不属于任何闭合尾迹的射线。它们是无理数,我猜没有更多已知的信息。您可以用适合尾迹的角度来近似它们......
这类似于通过连续去除开区间来构建中间 1/3 标准康托集。
- 从 [0,1] 开始。
- 去除 (1/3, 2/3)。
- 去除 (1/7, 2/7) 和 (5/7, 6/7)
- ...
剩下的角度有一个康托集,它们是落在主心形上的所有射线的角度。有理数角度属于根,无理数角度属于西格尔和克莱默参数。此外,每个有理数角度都是经过有限步后去除的区间的边界点。所以在下面的去除闭区间的构造中,你不会得到一个康托集,只有无理数角度会保留下来
- 从 [0,1] 开始。
- 去除 [1/3, 2/3]。
- 去除 [1/7, 2/7] 和 [5/7, 6/7]
- 圆柱体重新归一化
- Arnaud Chéritat : 2009 年 4 月罗马演讲 : 西格尔圆盘
- 西格尔圆盘的边界 - Rafael de la Llave 和 Nikola P. Petrov 对其动力学和规律性的数值研究
- 不动点和圆映射,作者:Ricardo Pérez-Marco
- fractint - 朱利亚集、轨道、西格尔圆盘
- youtube: Gary Welz 制作的西格尔圆盘坍塌
- 小除数[43]
- ↑ 关于二次有理映射的西格尔圆盘的张预模型。作者:Arnaud Cheritat CNRS,图卢兹大学 2011 年 2 月
- ↑ 维基百科 : 西格尔圆盘
- ↑ 数学百科全书 : 西格尔圆盘(参见离散情况)
- ↑ 关于无理数内角的更多乐趣,作者:Faber McMullen
- ↑ 维基百科 : 无理数
- ↑ 西格尔圆盘,作者:Xavier Buff 和 Arnaud Ch ́ritat e 图卢兹大学罗马,2009 年 4 月
- ↑ Davoud Cheraghi 主页
- ↑ wikipedia : 共形半径
- ↑ scholarpedia : 二次Siegel圆盘
- ↑ scholarpedia : 二次Siegel圆盘
- ↑ Scholarpedia上的图片InfoldingSiegelDisk.gif
- ↑ Julia集的可计算性,作者:Mark Braverman,Michael Yampolsky
- ↑ 抛物线内爆下Siegel圆盘的半连续性,作者:Arnaud Chéritat
- ↑ 分形几何学:数学基础与应用,第二版,作者:Kenneth Falconer
- ↑ 二次Julia集中的Siegel圆盘相关的正向轨道的可视化教程,作者:G.Todd Miller
- ↑ 绘制Julia集的组合方法,作者:Chris King
- ↑ 无理内角的更多乐趣,作者:Faber
- ↑ 快速收敛的有理数级数的无理性,作者:Daniel Duverney
- ↑ 不可计算的Julia集,作者:M. BRAVERMAN,M. YAMPOLSKY
- ↑ Mandelbrot序列和轨道,作者:Stefan Forcey
- ↑ Jay Hill : JuliaSetsOrbitsSiegelDisks.txt
- ↑ wikipedia上的倍乘器
- ↑ wikipedia上的黄金分割
- ↑ 黄金分割Julia集视频,作者:fractal
- ↑ wikipedia : 连分数
- ↑ 绘制Julia集的组合方法,作者:Chris King
- ↑ 黄金分割Siegel圆盘,作者:Curtis T McMullen
- ↑ Siegel圆盘,作者:Jim Muth
- ↑ Siegel圆盘,作者:Davoud Cheraghi
- ↑ Mathematica中的更好的Siegel圆盘程序,作者:Roger Bagula
- ↑ Xander的博客
- ↑ Galerie II : 全纯动力学与复分析,作者:Arnaud Chéritat
- ↑ 二次Siegel圆盘的新旧知识,作者:SAEED ZAKERI
- ↑ 旋转集与多项式动力学,作者:Zakeri
- ↑ 整数序列ID=A000045
- ↑ wolframalpha : 连分数[0;2,1,GoldenRatio]
- ↑ 内折Siegel圆盘,作者:Arnaud Chéritat
- ↑ wolfram alpha : 9/13
- ↑ wolfram alpha : 38/55
- ↑ 具有光滑边界的Siegel圆盘,作者:ARTUR AVILA,XAVIER BUFF,ARNAUD CHERITAT
- ↑ 二次多项式Siegel圆盘的一些例子,作者:Davoud Cheraghi
- ↑ wolfram alpha : 2/7
- ↑ 小除数简介,作者:S. Marmi
- 某些包含具有无理旋转圆形的Julia集的局部连通性。/ Petersen, Carsten Lunde. 发表在:Acta Mathematica,第177卷,第2期,1996年,第 163-224页。
- 二次Julia集的构建块。 文章发表在:Transactions of the American Mathematical Society 351(3):1171-1201 · 1999年1月 DOI: 10.1090/S0002-9947-99-02346-6