分形/复平面迭代/尖端米修列维奇
外观
< 分形
-
曼德勃罗集的灌木模型
-
参数道,1/3 觉醒,射线落在 主米修列维奇点 上
参数平面 的部分
- 找到米修列维奇点
- 前周期和周期
- c 值
- 找到落在它上面的外部射线的角度
"the external argument can be calculated as the limit of the arguments of the structural components of the branches 1, 11, 111,..., with periods 4, 5, 6,..., that is, the limit of .(0011), .(00111), .(001111),..., or the limit of .(0100), .(01000), .(010000), .... Hence, ftip(1/3) = .00(1) = .01(0), that are two equal values. " [3]
由 克劳德 提供的方法
算法步骤
- 找到觉醒的角度
- 找到主米修列维奇点 M 的角度
- 使用以下方法找到辐条尖端角度:“每个辐条的尖端是相邻角度的最长匹配前缀,后面追加 1”
落在 M 上的 3 个角度
0.001(010) 0.001(100) 0.010(001)
每个辐条的尖端是相邻角度的最长匹配前缀,后面追加 1
0.001(010) // 9/56 = 0.160(714285) 0.0011 // ltip = 3/16 = 0.1875 0.001(100) // 11/56 = 0.196(428571) 0.01 // ftip = 1/4 = 0.25 0.010(001) // 15/56 = 0.267(857142)
用 Mandel 程序进行检查
The angle 3/16 or 0011 has preperiod = 4 and period = 1. Entropy: e^h = 2^B = λ = 1.59898328 The corresponding parameter ray lands at a Misiurewicz point of preperiod 4 and period dividing 1. Do you want to draw the ray and to shift c to the landing point?
c = -0.017187977338350 +1.037652343793215 i period = 0
The angle 1/4 or 01 has preperiod = 2 and period = 1. Entropy: e^h = 2^B = λ = 1.69562077 The corresponding parameter ray lands at a Misiurewicz point of preperiod 2 and period dividing 1. Do you want to draw the ray and to shift c to the landing point?
M_{2,1) = c = -0.228155493653962 +1.115142508039937 i
The angle 1/6 or 0p01 has preperiod = 1 and period = 2. The corresponding parameter ray lands at a Misiurewicz point of preperiod 1 and period dividing 2. Do you want to draw the ray and to shift c to the landing point?
c = -0.000000000000000 +1.000000000000000 i period = 10000
-
主天线尖端 (1/2 觉醒)
尖端
- ftip = M_{2,1} = 0.01(0) = 1/4 = c = -0.228155493653962 +1.115142508039937 i
- ltip ??? (待办事项)
The angle 1/4 or 01 has preperiod = 2 and period = 1. Entropy: e^h = 2^B = λ = 1.69562077 The corresponding parameter ray lands at a Misiurewicz point of preperiod 2 and period dividing 1. Do you want to draw the ray and to shift c to the landing point? c = -0.228155493653962 +1.115142508039937 i The angle 1/4 or 01 has preperiod = 2 and period = 1. The corresponding dynamic ray lands at a preperiodic point of preperiod 2 and period dividing 1. Do you want to draw the ray and to shift z to the landing point? z = -0.228155493653962 +1.115142508039937 i The angle 4/7 or p100 has preperiod = 0 and period = 3. The dynamic ray lands at a repelling or parabolic point of period dividing 3. Do you want to draw the ray and to shift z to the landing point? z = -0.419643377607081 +0.606290729207199 i The angle 1/8 or 001 has preperiod = 3 and period = 1. The corresponding dynamic ray lands at a preperiodic point of preperiod 3 and period dividing 1. Do you want to draw the ray and to shift z to the landing point? z = 0.000000000159395 +0.000000000076028 i The angle 3/16 or 0011 has preperiod = 4 and period = 1. Entropy: e^h = 2^B = λ = 1.59898328 The corresponding parameter ray lands at a Misiurewicz point of preperiod 4 and period dividing 1. Do you want to draw the ray and to shift c to the landing point? c = -0.017187977338350 +1.037652343793215 i period = 0 The angle 1/6 or 0p01 has preperiod = 1 and period = 2. The corresponding parameter ray lands at a Misiurewicz point of preperiod 1 and period dividing 2. Do you want to draw the ray and to shift c to the landing point? c = -0.000000000000000 +1.000000000000000 i period = 10000
- c = 0.444556879255044 +0.409933108300984 i 周期= 0 // 1/16 的着陆
- c = -0.636754346582390 +0.685031297083677 i 周期= 0 // 5/16 的着陆
- 12/25 觉醒 的主心形由具有以下角度的参数射线包围
- 11184809/33554431 或 p0101010101010101010101001 = 0.(0101010101010101010101001)
- 11184810/33554431 或 p0101010101010101010101010
m-exray-out 100 -0.7432918908524301 0.1312405523087976 8 1000 24 4
结果
.010101010101010101010100(1010)
即
.01010101010101010101010(01)
- 落在尖端上的射线的外部角度的周期/前周期与尖端(着陆点)的周期/前周期之间有什么关系?
所有落在同一个周期点上的射线具有相同的周期:射线的公共周期是其着陆点周期的(可能为真)倍数;因此,可以区分:射线周期与轨道周期。[4]
- ↑ 终点 作者:罗伯特·P·穆纳福,2008 年 3 月 9 日。
- ↑ mathoverflow 问题:除了简单地四处探查,还有其他方法可以找到曼德勃罗集中的深度区域吗?
- ↑ G. Pastor,M. Romera,G. Alvarez,J. Nunez,D. Arroyo,F. Montoya,“操作 Douady 和 Hubbard 的外部参数”,自然和社会中的离散动力学,第 2007 卷,文章 ID 045920,17 页,2007 年。https://doi.org/10.1155/2007/45920
- ↑ H. Bruin 和 D. Schleicher,二次多项式的符号动力学,米塔格-莱夫勒研究所,瑞典皇家科学院,7。