跳转到内容

抽象代数主题

50% developed
来自维基教科书,开放的世界,开放的书籍

本书旨在涵盖代数结构和方法,这些结构和方法在其他数学领域(如代数几何和表示论)中发挥基本作用。更准确地说,第一章涵盖了非交换环的基本原理和同调语言,为后续章节奠定了基础。第二章涵盖了交换代数,我们将其视为代数几何的局部理论;重点将放在与多个复变量的(历史)联系上。第三章专门介绍域论,第四章介绍线性代数。第五章研究李代数,重点介绍其在算术问题中的应用。

第一部分。基础

第一章。 非交换环 0% 开发  截至 2010 年 5 月 (2010 年 5 月)
雅各布森根
第二章。 交换代数 25% 开发  截至 2010 年 5 月 (2010 年 5 月)
环的谱,理想的根
第三章。 域论 0% 开发  截至 2010 年 5 月 (2010 年 5 月)
伽罗瓦理论,斜域
第四章。 线性代数 0% 开发  截至 2010 年 5 月 (2010 年 5 月)
穆尔-彭罗斯逆,斜域上的矩阵,辛几何,二次型,史密斯标准型
第五章。 李代数 0% 开发  截至 2010 年 5 月 (2010 年 5 月)
第六章。 结合代数 0% 开发  截至 2010 年 5 月 (2010 年 5 月)
非交换环的根,可分性,中心单代数,霍普夫代数

第二部分。应用

第三部分。附录

华夏公益教科书