跳转到内容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
目录
移到侧边栏
隐藏
开始
1
定理
2
证明
3
图表
切换目录
抽象代数/群论/群/双重逆
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
Wikidata item
出现
移到侧边栏
隐藏
来自维基教科书,开放的书籍,为开放的世界
<
抽象代数
|
群论
|
群
定理
[
编辑
|
编辑源代码
]
设G为任意
群
,其运算为
∗
{\displaystyle \ast }
.
∀
g
∈
G
:
[
g
−
1
]
−
1
=
g
{\displaystyle \forall \;g\in G:[g^{-1}]^{-1}=g}
在群G中,任何元素
g
的逆元的逆元是
g
。
证明
[
编辑
|
编辑源代码
]
0. 选择
g
∈
G
{\displaystyle {\color {OliveGreen}g}\in G}
1.
∃
g
−
1
∈
G
:
g
∗
g
−
1
=
g
−
1
∗
g
=
e
G
{\displaystyle \exists \;{\color {BrickRed}g^{-1}}\in G:{\color {OliveGreen}g}\ast {\color {BrickRed}g^{-1}}={\color {BrickRed}g^{-1}}\ast {\color {OliveGreen}g}=e_{G}}
在G中
g
的逆元的定义
(使用 1,3)
2.
g
∗
a
=
a
∗
g
=
e
G
{\displaystyle {\color {OliveGreen}g}\ast {\color {BrickRed}a}={\color {BrickRed}a}\ast {\color {OliveGreen}g}=e_{G}}
设
a
=
g
−1
3.
a
∗
g
=
g
∗
a
=
e
G
{\displaystyle {\color {BrickRed}a}\ast {\color {OliveGreen}g}={\color {OliveGreen}g}\ast {\color {BrickRed}a}=e_{G}}
4.
[
a
]
−
1
=
g
{\displaystyle [{\color {BrickRed}a}]^{-1}={\color {OliveGreen}g}}
在G中
a
的逆元的定义
(使用 2)
5.
[
g
−
1
]
−
1
=
g
{\displaystyle [{\color {BrickRed}g^{-1}}]^{-1}={\color {OliveGreen}g}}
由于
a
=
g
−1
图表
[
编辑
|
编辑源代码
]
1. 实心圆的逆元是空心圆。
2. 空心圆的逆元是实心圆,根据 1。
分类
:
书籍:抽象代数
华夏公益教科书