高中数学扩展/矩阵/解答
HSME |
内容 |
---|
矩阵 |
递推关系 |
问题和项目 |
习题集 |
项目 |
解答 |
练习解答 |
习题集解答 |
杂项 |
定义表 |
完整版 |
目前,主要精力集中在编写每章的主要内容。因此,本习题解答部分可能已过时,并显示为杂乱无章。
如果您有任何问题,请在“讨论部分”留下评论,或联系作者或任何主要贡献者。
1.
- a)
- b)
2.
- a)
( 1 1 0 1 ) ( 3 1 ) = {\displaystyle {\begin{pmatrix}1&1\\0&1\\\end{pmatrix}}{\begin{pmatrix}3\\1\\\end{pmatrix}}=} ( 4 1 ) {\displaystyle {\begin{pmatrix}4\\1\\\end{pmatrix}}}
- b)
( 3 1 2 8 ) ( 1 1 0 2 ) ( 1 1 0 1 ) ( 1 1 ) = {\displaystyle {\begin{pmatrix}3&1\\2&8\\\end{pmatrix}}{\begin{pmatrix}1&1\\0&2\\\end{pmatrix}}{\begin{pmatrix}1&1\\0&1\\\end{pmatrix}}{\begin{pmatrix}1\\1\\\end{pmatrix}}=} ( 3 1 2 8 ) ( 1 1 0 2 ) ( 2 1 ) = {\displaystyle {\begin{pmatrix}3&1\\2&8\\\end{pmatrix}}{\begin{pmatrix}1&1\\0&2\\\end{pmatrix}}{\begin{pmatrix}2\\1\\\end{pmatrix}}=} ( 3 1 2 8 ) ( 3 2 ) = {\displaystyle {\begin{pmatrix}3&1\\2&8\\\end{pmatrix}}{\begin{pmatrix}3\\2\\\end{pmatrix}}=} ( 11 22 ) {\displaystyle {\begin{pmatrix}11\\22\\\end{pmatrix}}}
3.
C = ( 1 2 4 5 ) ( 1 0 0 1 ) = ( 1 2 4 5 ) {\displaystyle C={\begin{pmatrix}1&2\\4&5\\\end{pmatrix}}{\begin{pmatrix}1&0\\0&1\\\end{pmatrix}}={\begin{pmatrix}1&2\\4&5\\\end{pmatrix}}} D = ( 1 0 0 1 ) ( 1 2 4 5 ) = ( 1 2 4 5 ) {\displaystyle D={\begin{pmatrix}1&0\\0&1\\\end{pmatrix}}{\begin{pmatrix}1&2\\4&5\\\end{pmatrix}}={\begin{pmatrix}1&2\\4&5\\\end{pmatrix}}}
这里要注意的是,当 2x2 矩阵与另一个矩阵相乘时,它保持不变。对角线上只有 1,其他地方为 0 的矩阵被称为单位矩阵,称为I,任何矩阵乘以它的任何一边都会保持不变。也就是说
注意:本节中的其余练习是“非向量矩阵的乘法”部分中先前练习的剩余部分
3.
C = ( 1 2 3 4 5 6 7 8 9 ) ( 1 0 0 0 1 0 0 0 1 ) = ( 1 2 3 4 5 6 7 8 9 ) {\displaystyle C={\begin{pmatrix}1&2&3\\4&5&6\\7&8&9\\\end{pmatrix}}{\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\\\end{pmatrix}}={\begin{pmatrix}1&2&3\\4&5&6\\7&8&9\\\end{pmatrix}}}
D = ( 1 0 0 0 1 0 0 0 1 ) ( 1 2 3 4 5 6 7 8 9 ) = ( 1 2 3 4 5 6 7 8 9 ) {\displaystyle D={\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\\\end{pmatrix}}{\begin{pmatrix}1&2&3\\4&5&6\\7&8&9\\\end{pmatrix}}={\begin{pmatrix}1&2&3\\4&5&6\\7&8&9\\\end{pmatrix}}}
这里要注意的是,当 1 到 9 的矩阵与另一个矩阵相乘时,它保持不变。对角线上只有 1,其他地方为 0 的矩阵被称为单位矩阵,称为I,任何矩阵乘以它的任何一边都会保持不变。也就是说
4. a)
A 5 = ( − 1 6 − 1 4 ) ( − 1 6 − 1 4 ) ( − 1 6 − 1 4 ) ( − 1 6 − 1 4 ) ( − 1 6 − 1 4 ) = {\displaystyle A^{5}={\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}{\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}{\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}{\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}{\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}=} ( − 1 6 − 1 4 ) ( − 1 6 − 1 4 ) ( − 1 6 − 1 4 ) ( − 5 18 − 3 10 ) = {\displaystyle {\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}{\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}{\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}{\begin{pmatrix}-5&18\\-3&10\\\end{pmatrix}}=} ( − 1 6 − 1 4 ) ( − 1 6 − 1 4 ) ( − 13 42 − 7 22 ) = {\displaystyle {\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}{\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}{\begin{pmatrix}-13&42\\-7&22\\\end{pmatrix}}=} ( − 1 6 − 1 4 ) ( − 29 90 − 15 46 ) = {\displaystyle {\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}{\begin{pmatrix}-29&90\\-15&46\\\end{pmatrix}}=} ( − 61 186 − 31 94 ) {\displaystyle {\begin{pmatrix}-61&186\\-31&94\\\end{pmatrix}}}
b)
( 1 − 2 − 1 3 ) ( 3 2 1 1 ) = ( ( 1 × 3 ) + ( − 2 × 1 ) ( 1 × 2 ) + ( − 2 × 1 ) ( − 1 × 3 ) + ( 3 × 1 ) ( − 1 × 2 ) + ( 3 × 1 ) ) = ( 1 0 0 1 ) {\displaystyle {\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}{\begin{pmatrix}3&2\\1&1\\\end{pmatrix}}={\begin{pmatrix}(1\times 3)+(-2\times 1)&(1\times 2)+(-2\times 1)\\(-1\times 3)+(3\times 1)&(-1\times 2)+(3\times 1)\\\end{pmatrix}}={\begin{pmatrix}1&0\\0&1\\\end{pmatrix}}}
c)
( 1 0 0 1 ) ( a b c d ) = ( ( 1 × a ) + ( 0 × b ) ( 0 × a ) + ( 1 × b ) ( 1 × c ) + ( 0 × d ) ( 0 × c ) + ( 1 × d ) ) = ( a b c d ) {\displaystyle {\begin{pmatrix}1&0\\0&1\\\end{pmatrix}}{\begin{pmatrix}a&b\\c&d\\\end{pmatrix}}={\begin{pmatrix}(1\times a)+(0\times b)&(0\times a)+(1\times b)\\(1\times c)+(0\times d)&(0\times c)+(1\times d)\\\end{pmatrix}}={\begin{pmatrix}a&b\\c&d\\\end{pmatrix}}}
d)
A = ( 3 2 1 1 ) ( 1 0 0 2 ) ( 1 − 2 − 1 3 ) = {\displaystyle A={\begin{pmatrix}3&2\\1&1\\\end{pmatrix}}{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}=} ( 3 4 1 2 ) ( 1 − 2 − 1 3 ) = {\displaystyle {\begin{pmatrix}3&4\\1&2\\\end{pmatrix}}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}=} ( − 1 6 − 1 4 ) {\displaystyle {\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}}
e) 举例来说,首先计算 A2
A 2 = ( 3 2 1 1 ) ( 1 0 0 2 ) ( 1 − 2 − 1 3 ) ( 3 2 1 1 ) ( 1 0 0 2 ) ( 1 − 2 − 1 3 ) = {\displaystyle A^{2}={\begin{pmatrix}3&2\\1&1\\\end{pmatrix}}{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}{\begin{pmatrix}3&2\\1&1\\\end{pmatrix}}{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}=} ( 3 2 1 1 ) ( 1 0 0 2 ) ( 1 0 0 1 ) ( 1 0 0 2 ) ( 1 − 2 − 1 3 ) = {\displaystyle {\begin{pmatrix}3&2\\1&1\\\end{pmatrix}}{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}{\begin{pmatrix}1&0\\0&1\\\end{pmatrix}}{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}{\begin{pmatrix}1&-2\\ ( 3 2 1 1 ) ( 1 0 0 2 ) ( 1 0 0 2 ) ( 1 − 2 − 1 3 ) = {\displaystyle {\begin{pmatrix}3&2\\1&1\\\end{pmatrix}}{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}=} ( 3 2 1 1 ) ( 1 0 0 2 ) 2 ( 1 − 2 − 1 3 ) = {\displaystyle {\begin{pmatrix}3&2\\1&1\\\end{pmatrix}}{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}^{2}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}=} ( 3 2 1 1 ) ( 1 2 0 0 2 2 ) ( 1 − 2 − 1 3 ) = {\displaystyle {\begin{pmatrix}3&2\\1&1\\\end{pmatrix}}{\begin{pmatrix}1^{2}&0\\0&2^{2}\\\end{pmatrix}}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}=} ( 3 2 1 1 ) ( 1 0 0 4 ) ( 1 − 2 − 1 3 ) = {\displaystyle {\begin{pmatrix}3&2\\1&1\\\end{pmatrix}}{\begin{pmatrix}1&0\\0&4\\\end{pmatrix}}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}=} ( 3 8 1 4 ) ( 1 − 2 − 1 3 ) = {\displaystyle {\begin{pmatrix}3&8\\1&4\\\end{pmatrix}}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}=} ( − 5 18 − 3 10 ) {\displaystyle {\begin{pmatrix}-5&18\\-3&10\\\end{pmatrix}}}
现在让我们对 A5 做与上面相同的简化 -
A 5 = ( 3 2 1 1 ) ( 1 0 0 2 ) 5 ( 1 − 2 − 1 3 ) = {\displaystyle A^{5}={\begin{pmatrix}3&2\\1&1\\\end{pmatrix}}{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}^{5}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}=} ( 3 2 1 1 ) ( 1 5 0 0 2 5 ) ( 1 − 2 − 1 3 ) = {\displaystyle {\begin{pmatrix}3&2\\1&1\\\end{pmatrix}}{\begin{pmatrix}1^{5}&0\\0&2^{5}\\\end{pmatrix}}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}=} ( 3 2 1 1 ) ( 1 0 0 32 ) ( 1 − 2 − 1 3 ) = {\displaystyle {\begin{pmatrix}3&2\\1&1\\\end{pmatrix}}{\begin{pmatrix}1&0\\0&32\\\end{pmatrix}}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}=} ( 3 64 1 32 ) ( 1 − 2 − 1 3 ) = {\displaystyle {\begin{pmatrix}3&64\\1&32\\\end{pmatrix}}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}=} ( − 61 186 − 31 94 ) {\displaystyle {\begin{pmatrix}-61&186\\-31&94\\\end{pmatrix}}}
f)
A 100 = ( 3 2 1 1 ) ( 1 0 0 2 ) 100 ( 1 − 2 − 1 3 ) = {\displaystyle A^{100}={\begin{pmatrix}3&2\\1&1\\\end{pmatrix}}{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}^{100}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}=} ( 3 2 1 1 ) ( 1 100 0 0 2 100 ) ( 1 − 2 − 1 3 ) = {\displaystyle {\begin{pmatrix}3&2\\1&1\\\end{pmatrix}}{\begin{pmatrix}1^{100}&0\\0&2^{100}\\\end{pmatrix}}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}=} ( 3 2 1 1 ) ( 1 0 0 1267650600228229401496703205376 ) ( 1 − 2 − 1 3 ) = {\displaystyle {\begin{pmatrix}3&2\\1&1\\\end{pmatrix}}{\begin{pmatrix}1&0\\0&1267650600228229401496703205376\\\end{pmatrix}}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}=} ( 3 2535301200456458802993406410752 1 1267650600228229401496703205376 ) ( 1 − 2 − 1 3 ) = {\displaystyle {\begin{pmatrix}3&2535301200456458802993406410752\\1&1267650600228229401496703205376\\\end{pmatrix}}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}=} ( − 2535301200456458802993406410751 7605903601369376408980219232254 − 1267650600228229401496703205373 3802951800684688204490109616122 ) {\displaystyle {\begin{pmatrix}-2535301200456458802993406410751&7605903601369376408980219232254\\-1267650600228229401496703205373&3802951800684688204490109616122\\\end{pmatrix}}}
行列式和逆矩阵练习
[edit | edit source]1.
det ( A ) = 2 5 × 5 2 − 2 3 × 3 2 = 0 {\displaystyle \det(A)={\frac {2}{5}}\times {\frac {5}{2}}-{\frac {2}{3}}\times {\frac {3}{2}}=0}
联立方程将转换为以下矩阵
det ( ( 2 5 2 3 3 2 5 2 ) ) = 0 {\displaystyle \det({\begin{pmatrix}{\frac {2}{5}}&{\frac {2}{3}}\\\\{\frac {3}{2}}&{\frac {5}{2}}\end{pmatrix}})=0}
我们可以说,这些联立方程没有唯一的解。
2. 首先计算你乘以行列式时得到的值
det ( ( a b c d ) ) det ( ( e f g h ) ) = {\displaystyle \det({\begin{pmatrix}a&b\\c&d\end{pmatrix}})\det({\begin{pmatrix}e&f\\g&h\end{pmatrix}})=} ( a d − b c ) ( e h − f g ) = {\displaystyle (ad-bc)(eh-fg)=} a d e h − b c e h − a d f g + b c f g {\displaystyle adeh-bceh-adfg+bcfg}
现在让我们先进行矩阵乘法来计算 C
det ( ( a b c d ) ( e f g h ) ) = {\displaystyle \det({\begin{pmatrix}a&b\\c&d\end{pmatrix}}{\begin{pmatrix}e&f\\g&h\end{pmatrix}})=} det ( ( a e + b g a f + b h c e + d g c f + d h ) ) = {\displaystyle \det({\begin{pmatrix}ae+bg&af+bh\\ce+dg&cf+dh\end{pmatrix}})=} ( a e + b g ) ( c f + d h ) − ( a f + b h ) ( c e + d g ) = {\displaystyle (ae+bg)(cf+dh)-(af+bh)(ce+dg)=} a e c f + b g c f + a e d h + b g d h − a f c e − b g c e − a f d g − b h d g = {\displaystyle aecf+bgcf+aedh+bgdh-afce-bgce-afdg-bhdg=} b g c f + a e d h − b g c e − a f d g {\displaystyle bgcf+aedh-bgce-afdg}
这与我们计算行列式乘积时得到的值相同,因此
- det(C) = det(A)det(B)
适用于 2×2 的情况。
3.
A = ( a b c d ) {\displaystyle A={\begin{pmatrix}a&b\\c&d\end{pmatrix}}} det ( A ) = a d − b c {\displaystyle \det(A)=ad-bc} A ′ = ( c d a b ) {\displaystyle A'={\begin{pmatrix}c&d\\a&b\end{pmatrix}}} det ( A ′ ) = c b − d a {\displaystyle \det(A')=cb-da} − det ( A ′ ) = − ( b c − a d ) = a d − b c {\displaystyle -\det(A')=-(bc-ad)=ad-bc}
因此 det(A) = -det(A') 成立。
4. a)
A = P − 1 B P {\displaystyle A=P^{-1}BP} det ( A ) = det ( P − 1 ) det ( B ) det ( P ) = {\displaystyle \det(A)=\det(P^{-1})\det(B)\det(P)=} det ( P − 1 ) det ( P ) det ( B ) = {\displaystyle \det(P^{-1})\det(P)\det(B)=} det ( P − 1 P ) det ( B ) = {\displaystyle \det {(P^{-1}P)}\det(B)=} det ( I ) det ( B ) = {\displaystyle \det {(I)}\det(B)=} det ( B ) {\displaystyle \det(B)}
因此,det(A) = det(B) b) 如果
5. a)
A 5 = {\displaystyle A^{5}=} ( − 1 6 − 1 4 ) ( − 1 6 − 1 4 ) ( − 1 6 − 1 4 ) ( − 1 6 − 1 4 ) ( − 1 6 − 1 4 ) = {\displaystyle {\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}{\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}{\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}{\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}{\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}=} ( ( − 1 6 − 1 4 ) ( − 1 6 − 1 4 ) ) ( ( − 1 6 − 1 4 ) ( − 1 6 − 1 4 ) ) ( − 1 6 − 1 4 ) = {\displaystyle ({\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}{\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}})({\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}{\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}){\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}=} ( − 5 18 − 3 10 ) ( − 5 18 − 3 10 ) ( − 1 6 − 1 4 ) = {\displaystyle {\begin{pmatrix}-5&18\\-3&10\\\end{pmatrix}}{\begin{pmatrix}-5&18\\-3&10\\\end{pmatrix}}{\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}=} ( − 5 18 − 3 10 ) ( − 13 42 − 7 22 ) = {\displaystyle {\begin{pmatrix}-5&18\\-3&10\\\end{pmatrix}}{\begin{pmatrix}-13&42\\-7&22\\\end{pmatrix}}=} ( − 61 186 − 31 94 ) {\displaystyle {\begin{pmatrix}-61&186\\-31&94\\\end{pmatrix}}}
b)
P − 1 = 1 1 ( 3 2 1 1 ) = ( 3 2 1 1 ) {\displaystyle P^{-1}={\frac {1}{1}}{\begin{pmatrix}3&2\\1&1\\\end{pmatrix}}={\begin{pmatrix}3&2\\1&1\\\end{pmatrix}}}
c)
( 3 2 1 1 ) ( 1 0 0 2 ) ( 1 − 2 − 1 3 ) = {\displaystyle {\begin{pmatrix}3&2\\1&1\\\end{pmatrix}}{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}=} ( 3 4 1 2 ) ( 1 − 2 − 1 3 ) = {\displaystyle {\begin{pmatrix}3&4\\1&2\\\end{pmatrix}}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}=} ( − 1 6 − 1 4 ) {\displaystyle {\begin{pmatrix}-1&6\\-1&4\\\end{pmatrix}}}
d)
A 5 = {\displaystyle A^{5}=} ( P − 1 ( 1 0 0 2 ) P ) 5 = {\displaystyle (P^{-1}{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}P)^{5}=} P − 1 ( 1 0 0 2 ) P P − 1 ( 1 0 0 2 ) P P − 1 ( 1 0 0 2 ) P P − 1 ( 1 0 0 2 ) P P − 1 ( 1 0 0 2 ) P = {\displaystyle P^{-1}{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}PP^{-1}{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}PP^{-1}{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}PP^{-1}{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}PP^{-1}{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}P=} P − 1 ( 1 0 0 2 ) I ( 1 0 0 2 ) I ( 1 0 0 2 ) I ( 1 0 0 2 ) I ( 1 0 0 2 ) P = {\displaystyle P^{-1}{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}I{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}I{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}I{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}I{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}P=} P − 1 ( 1 0 0 2 ) 5 P = {\displaystyle P^{-1}{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}^{5}P=} P − 1 ( 1 5 0 0 2 5 ) P = {\displaystyle P^{-1}{\begin{pmatrix}1^{5}&0\\0&2^{5}\\\end{pmatrix}}P=} P − 1 ( 1 0 0 32 ) P = {\displaystyle P^{-1}{\begin{pmatrix}1&0\\0&32\\\end{pmatrix}}P=} ( 3 2 1 1 ) ( 1 0 0 32 ) ( 1 − 2 − 1 3 ) = {\displaystyle {\begin{pmatrix}3&2\\1&1\\\end{pmatrix}}{\begin{pmatrix}1&0\\0&32\\\end{pmatrix}}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}=} ( 3 64 1 32 ) ( 1 − 2 − 1 3 ) = {\displaystyle {\begin{pmatrix}3&64\\1&32\\\end{pmatrix}}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}=} ( − 61 186 − 31 94 ) {\displaystyle {\begin{pmatrix}-61&186\\-31&94\\\end{pmatrix}}}
我们可以看到,当矩阵被提升到五次方时,P及其逆矩阵消失了。因此,我们可以看到,我们可以很容易地计算 An,因为你只需要将对角矩阵提升到 n 次方。将对角矩阵提升到某个幂是很容易的,因为你只需要将对角线上的数字提升到那个幂。
e) 我们使用上面练习中推导的方法。
A 100 = {\displaystyle A^{100}=} ( P − 1 ( 1 0 0 2 ) P ) 100 = {\displaystyle (P^{-1}{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}P)^{100}=} P − 1 ( 1 0 0 2 ) 100 P = {\displaystyle P^{-1}{\begin{pmatrix}1&0\\0&2\\\end{pmatrix}}^{100}P=} P − 1 ( 1 100 0 0 2 100 ) P = {\displaystyle P^{-1}{\begin{pmatrix}1^{100}&0\\0&2^{100}\\\end{pmatrix}}P=} P − 1 ( 1 0 0 2 100 ) P = {\displaystyle P^{-1}{\begin{pmatrix}1&0\\0&2^{100}\\\end{pmatrix}}P=} ( 3 2 1 1 ) ( 1 0 0 2 100 ) ( 1 − 2 − 1 3 ) = {\displaystyle {\begin{pmatrix}3&2\\1&1\\\end{pmatrix}}{\begin{pmatrix}1&0\\0&2^{100}\\\end{pmatrix}}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}=} ( 3 2 101 1 2 100 ) ( 1 − 2 − 1 3 ) = {\displaystyle {\begin{pmatrix}3&2^{101}\\1&2^{100}\\\end{pmatrix}}{\begin{pmatrix}1&-2\\-1&3\\\end{pmatrix}}=} ( 3 − 2 101 3 × 2 101 − 6 1 − 2 100 3 × 2 100 − 2 ) {\displaystyle {\begin{pmatrix}3-2^{101}&3\times 2^{101}-6\\1-2^{100}&3\times 2^{100}-2\\\end{pmatrix}}}